Jelajahi Sumber

add python code

Jia, Jingyi 3 tahun lalu
induk
melakukan
d8c0bfa634
30 mengubah file dengan 173 tambahan dan 7 penghapusan
  1. TEMPAT SAMPAH
      .DS_Store
  2. TEMPAT SAMPAH
      User Study/.DS_Store
  3. TEMPAT SAMPAH
      User Study/Google Form/.DS_Store
  4. 3 0
      User Study/Google Form/Hector V2 Nutzerstudie.csv
  5. TEMPAT SAMPAH
      User Study/Google Form/I found it easy to concentrate on controlling the robot.jpg
  6. TEMPAT SAMPAH
      User Study/Google Form/I found it easy to move robot in desired position.jpg
  7. TEMPAT SAMPAH
      User Study/Google Form/I found it easy to perceive the details of the environment.jpg
  8. 64 0
      User Study/Google Form/statistic.py
  9. TEMPAT SAMPAH
      User Study/TLX/effort.jpg
  10. TEMPAT SAMPAH
      User Study/TLX/frustration.jpg
  11. TEMPAT SAMPAH
      User Study/TLX/mental-demand.jpg
  12. TEMPAT SAMPAH
      User Study/TLX/performance.jpg
  13. TEMPAT SAMPAH
      User Study/TLX/physical-demand.jpg
  14. 5 5
      User Study/TLX/statistic.py
  15. TEMPAT SAMPAH
      User Study/TLX/summary.jpg
  16. TEMPAT SAMPAH
      User Study/TLX/temporal-demand.jpg
  17. TEMPAT SAMPAH
      User Study/TLX/total.jpg
  18. TEMPAT SAMPAH
      User Study/TestResult/.DS_Store
  19. 5 2
      User Study/TestResult/0.csv
  20. TEMPAT SAMPAH
      User Study/TestResult/Adverage speed.jpg
  21. TEMPAT SAMPAH
      User Study/TestResult/Collision.jpg
  22. TEMPAT SAMPAH
      User Study/TestResult/Drive Distance.jpg
  23. 6 0
      User Study/TestResult/Mean.csv
  24. 25 0
      User Study/TestResult/Merged.csv
  25. TEMPAT SAMPAH
      User Study/TestResult/Remained Unvisible Target.jpg
  26. TEMPAT SAMPAH
      User Study/TestResult/Remained Visible Target.jpg
  27. TEMPAT SAMPAH
      User Study/TestResult/Rescued Target.jpg
  28. TEMPAT SAMPAH
      User Study/TestResult/Total driving time.jpg
  29. 65 0
      User Study/TestResult/statistic.py
  30. TEMPAT SAMPAH
      User Study/TestResult/summary.jpg

TEMPAT SAMPAH
.DS_Store


TEMPAT SAMPAH
User Study/.DS_Store


TEMPAT SAMPAH
User Study/Google Form/.DS_Store


+ 3 - 0
User Study/Google Form/Hector V2 Nutzerstudie.csv

@@ -0,0 +1,3 @@
+时间戳记,How old are you?,What is your gender?,What is or was your major (e.g. Computer Science)?,How much VR experience do you have?, I found it easy to move robot in desired position, I found it easy to concentrate on controlling the robot, I found it easy to perceive the details of the environment, I found it easy to move robot in desired position, I found it easy to concentrate on controlling the robot, I found it easy to perceive the details of the environment, I found it easy to move robot in desired position, I found it easy to concentrate on controlling the robot, I found it easy to perceive the details of the environment, I found it easy to move robot in desired position, I found it easy to concentrate on controlling the robot, I found it easy to perceive the details of the environment,Which operation mode do you like best? ,Why do you like it best? ,Which operation mode do you dislike the most?,Why do you dislike it the most? 
+2021/07/06 10:43:12 上午 GMT+2,22,Female,,5,2,3,4,2,4,1,2,4,4,1,4,4,Handle,,Lab,
+2021/07/06 10:44:10 上午 GMT+2,25,Male,,2,4,1,3,1,3,4,2,3,3,2,3,5,Handle,(Handle) because xxxxxx,Lab,(Lab) xxxxxxx

TEMPAT SAMPAH
User Study/Google Form/I found it easy to concentrate on controlling the robot.jpg


TEMPAT SAMPAH
User Study/Google Form/I found it easy to move robot in desired position.jpg


TEMPAT SAMPAH
User Study/Google Form/I found it easy to perceive the details of the environment.jpg


+ 64 - 0
User Study/Google Form/statistic.py

@@ -0,0 +1,64 @@
+import glob
+import os
+from numpy.lib.function_base import append
+import pandas as pd
+import matplotlib.pyplot as plt
+import time
+import seaborn as sns
+import numpy as np
+import csv
+import joypy
+
+
+def draw(filename,start):
+    file = pd.read_csv(FileName,usecols=[start,start+3,start+6,start+9])
+    temp = file.values.tolist()
+    file = np.transpose(temp)
+
+    kwargs = {
+        "bins": 20,
+        "histtype": "stepfilled",
+        "alpha": 0.5
+    }
+    
+    fig,ax = plt.subplots(figsize=(10, 7))
+    for i in range(0,4):
+        ax.hist(file[i], color = colors[i],label=conditions[i], **kwargs)
+
+    ax.set_title(filename)
+    ax.legend()
+    plt.show()
+    
+def draw2(filename,start):
+    file = pd.read_csv(FileName,usecols=[start,start+3,start+6,start+9])
+    temp = file.values.tolist()
+    # Draw Stripplot
+    plt.figure(figsize=(10,5))
+    medianprops = dict(linestyle='-', linewidth=1, color='black')
+    f = plt.boxplot(file,patch_artist = True,medianprops=medianprops,labels=conditions)
+    
+    for box,c in zip(f['boxes'], colors):
+        box.set(color='black', linewidth=1)
+        box.set_alpha(a)
+        box.set( facecolor = c )
+    plt.title(filename, fontsize=15)
+    plt.savefig(filename+".jpg",dpi=300)
+    #plt.show()
+
+
+FileName = "Hector V2 Nutzerstudie.csv"
+file = pd.read_csv(FileName)
+colors = sns.color_palette()
+a = 0.6
+
+conditions = ["Handle","Lab","Remote","UI"]
+questions = ["I found it easy to move robot in desired position","I found it easy to concentrate on controlling the robot","I found it easy to perceive the details of the environment"]
+
+start = 5;
+for i in range(0,3):
+    #draw(questions[i],start+i)
+    draw2(questions[i],start+i)
+
+
+
+

TEMPAT SAMPAH
User Study/TLX/effort.jpg


TEMPAT SAMPAH
User Study/TLX/frustration.jpg


TEMPAT SAMPAH
User Study/TLX/mental-demand.jpg


TEMPAT SAMPAH
User Study/TLX/performance.jpg


TEMPAT SAMPAH
User Study/TLX/physical-demand.jpg


+ 5 - 5
User Study/TLX/statistic.py

@@ -1,10 +1,10 @@
 import glob
 import os
-from numpy.lib.function_base import append
 import pandas as pd
 import matplotlib.pyplot as plt
 import time
 import numpy as np
+import seaborn as sns
 
 path = os.getcwd()
 
@@ -12,7 +12,7 @@ def draw(filename):
     conditions = file['condition']
     result = file[filename]
     plt.figure(figsize=(9, 6), dpi=100)
-    plt.bar(conditions, result, width=0.35, color=colors)
+    plt.bar(conditions, result, width=0.35, color=colors,alpha=a)
     plt.title(filename)
     plt.ylabel('score')
     plt.grid(alpha=0, linestyle=':')
@@ -29,7 +29,7 @@ def drawTogether():
         result = []
         for scale in scales:
             result.append(file.iloc[i][scale])
-        plt.bar(x+width*(i-1),result,width=width,color=colors[i],label=file.iloc[i]["condition"])
+        plt.bar(x+width*(i-1),result,width=width,color=colors[i],label=file.iloc[i]["condition"],alpha=a)
 
     plt.legend()
     
@@ -56,8 +56,8 @@ file.to_csv( "Mean.csv")
 
 file = pd.read_csv("Mean.csv")
 scales = ["mental-demand","physical-demand","temporal-demand","performance", "effort","frustration","total"]
-colors = ['lightcoral', 'gold','plum', 'paleturquoise']
-
+colors = sns.color_palette()
+a = 0.6
 for scale in scales:
     draw(scale)
 

TEMPAT SAMPAH
User Study/TLX/summary.jpg


TEMPAT SAMPAH
User Study/TLX/temporal-demand.jpg


TEMPAT SAMPAH
User Study/TLX/total.jpg


TEMPAT SAMPAH
User Study/TestResult/.DS_Store


+ 5 - 2
User Study/TestResult/0.csv

@@ -1,2 +1,5 @@
-participant,condition,Remained Time,Collision,Drive Distance,Total driving time,Adverage speed,Rescued Target,Remained Visible Target,Remained Unvisible Target,time,
-0,Simulation,0,0,0.08204317,0,0,0,0,10,2021/07/03 20:41,
+participant,condition,Remained Time,Collision,Drive Distance,Total driving time,Adverage speed,Rescued Target,Remained Visible Target,Remained Unvisible Target,time
+0,Handle,0,0,0.08204317,0,0,0,0,10,2021/7/3 20:41
+0,Lab,0,0,0.08204317,0,0,0,0,10,2021/7/3 20:41
+0,Remote,0,0,0.08204317,0,0,0,0,10,2021/7/3 20:41
+0,UI,0,0,0.08204317,0,0,0,0,10,2021/7/3 20:41

TEMPAT SAMPAH
User Study/TestResult/Adverage speed.jpg


TEMPAT SAMPAH
User Study/TestResult/Collision.jpg


TEMPAT SAMPAH
User Study/TestResult/Drive Distance.jpg


+ 6 - 0
User Study/TestResult/Mean.csv

@@ -0,0 +1,6 @@
+condition,Unnamed: 0,Unnamed: 0.1,Unnamed: 0.1.1,participant,Remained Time,Collision,Drive Distance,Total driving time,Adverage speed,Rescued Target,Remained Visible Target,Remained Unvisible Target,Unnamed: 11
+Handle,4.5,1.0,,0.0,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,
+Lab,5.5,2.0,,0.0,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,
+Remote,6.5,3.0,,0.0,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,
+Simulation,4.916666666666667,1.25,0.0,0.0,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,
+UI,7.75,4.0,,0.0,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,

+ 25 - 0
User Study/TestResult/Merged.csv

@@ -0,0 +1,25 @@
+,Unnamed: 0,Unnamed: 0.1,Unnamed: 0.1.1,participant,condition,Remained Time,Collision,Drive Distance,Total driving time,Adverage speed,Rescued Target,Remained Visible Target,Remained Unvisible Target,time,Unnamed: 11
+0,0.0,0.0,0.0,0.0,Simulation,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/07/03 20:41,
+1,1.0,1.0,,0.0,Handle,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+2,2.0,2.0,,0.0,Lab,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+3,3.0,3.0,,0.0,Remote,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+4,4.0,4.0,,0.0,UI,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+5,5.0,5.0,,0.0,Simulation,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+6,6.0,,,0.0,Handle,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+7,7.0,,,0.0,Lab,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+8,8.0,,,0.0,Remote,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+9,9.0,,,0.0,UI,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+10,10.0,,,0.0,Handle,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+11,11.0,,,0.0,Lab,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+12,12.0,,,0.0,Remote,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+13,13.0,0.0,,0.0,Simulation,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+14,14.0,,,0.0,UI,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+15,,,,0.0,Handle,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+16,,,,0.0,Lab,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+17,,,,0.0,Remote,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+18,,,,0.0,UI,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,2021/7/3 20:41,
+19,1.0,,,0.0,Handle,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+20,2.0,,,0.0,Lab,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+21,3.0,,,0.0,Remote,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+22,1.6666666666666667,0.0,,0.0,Simulation,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,
+23,4.0,,,0.0,UI,0.0,0.0,0.08204317,0.0,0.0,0.0,0.0,10.0,,

TEMPAT SAMPAH
User Study/TestResult/Remained Unvisible Target.jpg


TEMPAT SAMPAH
User Study/TestResult/Remained Visible Target.jpg


TEMPAT SAMPAH
User Study/TestResult/Rescued Target.jpg


TEMPAT SAMPAH
User Study/TestResult/Total driving time.jpg


+ 65 - 0
User Study/TestResult/statistic.py

@@ -0,0 +1,65 @@
+import glob
+import os
+import pandas as pd
+import matplotlib.pyplot as plt
+import time
+import numpy as np
+import seaborn as sns
+
+path = os.getcwd()
+
+def draw(filename):
+    conditions = file['condition']
+    result = file[filename]
+    plt.figure(figsize=(9, 6), dpi=100)
+    plt.bar(conditions, result, width=0.35, color=colors,alpha=a)
+    plt.title(filename)
+    plt.ylabel('score')
+    plt.grid(alpha=0, linestyle=':')
+    plt.savefig(filename + ".jpg", dpi=300)
+    #plt.show()
+
+def drawTogether():
+    plt.figure(figsize=(20,7))
+    x = np.arange(len(scales))
+    total_width, n = 0.8, 4
+    width = total_width / n
+    
+    for i in range(0,4):
+        result = []
+        for scale in scales:
+            result.append(file.iloc[i][scale])
+        plt.bar(x+width*(i-1),result,width=width,color=colors[i],label=file.iloc[i]["condition"],alpha=a)
+
+    plt.legend()
+    
+    plt.xticks(x+width/2,scales)
+    #plt.show()
+    
+    plt.savefig("summary.jpg",dpi=300)
+
+
+
+# Merge all the .csv file 
+all_files = glob.glob(os.path.join(path, "*.csv"))
+df_from_each_file = (pd.read_csv(f, sep=',') for f in all_files)
+df_merged = pd.concat(df_from_each_file, ignore_index=True)
+
+# Save the file to Merged.csv in the same folder
+df_merged.to_csv( "Merged.csv")
+
+# save the results in csv
+file = df_merged.groupby(["condition"]).mean() 
+file.to_csv( "Mean.csv")
+
+
+file = pd.read_csv("Mean.csv")
+scales = ["Collision","Drive Distance","Total driving time","Adverage speed","Rescued Target", "Remained Visible Target","Remained Unvisible Target"]
+colors = sns.color_palette()
+a = 0.6
+for scale in scales:
+    draw(scale)
+
+drawTogether()
+
+

TEMPAT SAMPAH
User Study/TestResult/summary.jpg