Kalman2DPositionFilter.cs 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. using Emgu.CV;
  2. using Emgu.CV.Structure;
  3. namespace BBIWARG.Utility
  4. {
  5. /// <summary>
  6. /// Filter used to smooth a series of 2d positions.
  7. /// </summary>
  8. internal class Kalman2DPositionFilter
  9. {
  10. /// <summary>
  11. /// number of measurements per second
  12. /// </summary>
  13. private float fps;
  14. /// <summary>
  15. /// the emgu kalman filter
  16. /// </summary>
  17. private Kalman kalman;
  18. /// <summary>
  19. /// xx entry for the measurement noise covariance matrix
  20. /// </summary>
  21. private float mXX;
  22. /// <summary>
  23. /// xy and yx entry for the measurement noise covariance matrix
  24. /// </summary>
  25. private float mXY;
  26. /// <summary>
  27. /// yy entry for the measurement noise covariance matrix
  28. /// </summary>
  29. private float mYY;
  30. /// <summary>
  31. /// value used for all entries in the process noise covariance matrix
  32. /// </summary>
  33. private float processNoiseFactor;
  34. /// <summary>
  35. /// true iff the kalman filter is initialized
  36. /// </summary>
  37. public bool Initialized { get; private set; }
  38. /// <summary>
  39. /// Creates a Kalman2DPositionFilter.
  40. /// </summary>
  41. /// <param name="mXX">xx entry for the measurement noise covariance matrix</param>
  42. /// <param name="mXY">xy and yx entry for the measurement noise covariance matrix</param>
  43. /// <param name="mYY">yy entry for the measurement noise covariance matrix</param>
  44. /// <param name="processNoiseFactor">value used for all entries in the process noise covariance matrix</param>
  45. /// <param name="fps">number of measurements per second</param>
  46. public Kalman2DPositionFilter(float mXX, float mXY, float mYY, float processNoiseFactor = 1.0e-4f, int fps = 30)
  47. {
  48. this.mXX = mXX;
  49. this.mXY = mXY;
  50. this.mYY = mYY;
  51. this.processNoiseFactor = processNoiseFactor;
  52. this.fps = fps;
  53. reset();
  54. }
  55. /// <summary>
  56. /// Computes a smoothed position for a measurement and updates the filter.
  57. /// </summary>
  58. /// <param name="rawPosition">the measurement</param>
  59. /// <returns>the smoothed position</returns>
  60. public Vector2D getCorrectedPosition(Vector2D rawPosition)
  61. {
  62. Matrix<float> rawPositionMatrix = new Matrix<float>(new float[,] { { rawPosition.X }, { rawPosition.Y } });
  63. // prediction according to model
  64. kalman.Predict();
  65. // corrected point
  66. Matrix<float> estimate = kalman.Correct(rawPositionMatrix);
  67. return new Vector2D(estimate[0, 0], estimate[1, 0]);
  68. }
  69. /// <summary>
  70. /// Computes a prediction for the next position based on the previous positions.
  71. /// </summary>
  72. /// <returns>prediction for the next position</returns>
  73. public Vector2D getPrediction()
  74. {
  75. Matrix<float> predicton = kalman.Predict();
  76. return new Vector2D(predicton[0, 0], predicton[1, 0]);
  77. }
  78. /// <summary>
  79. /// Resets the kalman filter.
  80. /// </summary>
  81. public void reset()
  82. {
  83. // 6 state variables and 2 measurements (0 controls)
  84. kalman = new Kalman(2, 2, 0);
  85. // time step (s)
  86. float t = 1 / fps;
  87. // transition matrix
  88. Matrix<float> transitionMatrix = new Matrix<float>(new float[,]
  89. {
  90. { 1.0f, 0.0f },
  91. { 0.0f, 1.0f }
  92. });
  93. kalman.TransitionMatrix = transitionMatrix;
  94. // measurement matrix
  95. Matrix<float> measurementMatrix = new Matrix<float>(new float[,]
  96. {
  97. { 1.0f, 0.0f }, // first measurement = x
  98. { 0.0f, 1.0f } // second measurement = y
  99. });
  100. kalman.MeasurementMatrix = measurementMatrix;
  101. // measurement noise covariance matrix
  102. Matrix<float> measurementNoiseCovarianceMatrix = new Matrix<float>(2, 2);
  103. measurementNoiseCovarianceMatrix[0, 0] = mXX;
  104. measurementNoiseCovarianceMatrix[0, 1] = measurementNoiseCovarianceMatrix[1, 0] = mXY;
  105. measurementNoiseCovarianceMatrix[1, 1] = mYY;
  106. kalman.MeasurementNoiseCovariance = measurementNoiseCovarianceMatrix;
  107. // process noise covariance matrix
  108. Matrix<float> processNoiseCovarianceMatrix = new Matrix<float>(2, 2);
  109. processNoiseCovarianceMatrix.SetIdentity(new MCvScalar(processNoiseFactor));
  110. kalman.ProcessNoiseCovariance = processNoiseCovarianceMatrix;
  111. // error covariance post matrix (initial value)
  112. Matrix<float> errorCovariancePostMatrix = new Matrix<float>(2, 2);
  113. errorCovariancePostMatrix.SetIdentity(new MCvScalar(processNoiseFactor));
  114. kalman.ErrorCovariancePost = errorCovariancePostMatrix;
  115. Initialized = false;
  116. }
  117. /// <summary>
  118. /// Sets the initial position.
  119. /// </summary>
  120. /// <param name="initialPosition">initial position</param>
  121. public void setInitialPosition(Vector2D initialPosition)
  122. {
  123. // initial state (x, y, v_x, v_y)
  124. Matrix<float> initialState = new Matrix<float>(new float[] { initialPosition.X, initialPosition.Y });
  125. kalman.CorrectedState = initialState;
  126. Initialized = true;
  127. }
  128. }
  129. }