123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- #include <iostream>
- #include <vector>
- #include <string>
- #include <algorithm>
- #include <random>
- struct r2 {
- double x = 0, y = 0;
- };
- std::string convertToStdString(const std::vector<bool>& vec);
- double euclidenDistance(const std::vector<bool>& vecA, const std::vector<bool>& vecB, int amountIfBits);
- double neighbourProbability(const std::vector<std::vector<bool>>& solutions, const int j, const int i, int amountOfBits, double omega);
- double euclidenDistance(const r2& y1, const r2& y2);
- double calculate_tDistributed_q(const std::vector<r2>& solutions, int j, int i);
- double calculate_thing(const r2& y1, r2 y2);
- double cost(const std::vector<double>& p, std::vector<double>& q, size_t amountOfSolutions);
- r2 computeGradient(int i, const std::vector<double>& q, const std::vector<double>& p, const std::vector<r2>& ySolutions, int amountOfSolutions);
- void updateQ(const size_t& amountOfSolutions, std::vector<double>& matrixQ, std::vector<r2>& ySoltuion);
- int main23(int argc, char * argv[] )
- {
- if (argc > 1) {
- std::cout << "Hello World! " << argv[1] << std::endl;
- }
- //Generate Solutions;
- const int amountOfBits = 100;
- size_t amountOfSolutions = 5;
- const double omega = 5;
- /*size_t amountOfSolutions = (size_t)std::pow(2, amountOfBits);
- std::vector<std::vector<bool> > solutions(amountOfSolutions);
- for (int i = 0; i < amountOfSolutions; i++) {
- std::vector<bool> newVec(amountOfBits);
- for (int k = 0; k < amountOfBits; k++) {
- int maxHalf = (int)std::pow(2, k);
- int max = maxHalf * 2;
- newVec[k] = i % max < maxHalf;
- }
- solutions[i] = newVec;
- }
- auto rng = std::default_random_engine{};
- std::shuffle(solutions.begin(), solutions.end(), rng);
- solutions.erase(solutions.begin() + solutions.size() / 2);
- amountOfSolutions /= 2;*/
-
- std::vector<std::vector<bool> > solutions(amountOfSolutions);
- std::random_device rd; //Will be used to obtain a seed for the random number engine
- std::mt19937 gen(rd()); //Standard mersenne_twister_engine seeded with rd()
- std::uniform_real_distribution<double> doubleDistr(0.0, 1.0);
- for (int i = 0; i < amountOfSolutions; i++) {
- std::vector<bool> newVec(amountOfBits);
- double rnd = doubleDistr(gen);
- for (int k = 0; k < amountOfBits; k++) {
- newVec[k] = doubleDistr(gen) < rnd;
- }
- solutions[i] = newVec;
- }
- for (int i = 0; i < amountOfSolutions; i++) {
- std::cout << "[" << convertToStdString(solutions[i]) << "]" << std::endl;
- }
- //Normal
- std::vector<double> matrixProbability(amountOfSolutions * amountOfSolutions);
- for (size_t i = 0; i < amountOfSolutions; i++) {
- for (size_t j = 0; j < amountOfSolutions; j++) {
- if (j == i) {
- matrixProbability[i * amountOfSolutions + j] = 0.0;
- }
- else {
- matrixProbability[i * amountOfSolutions + j] = neighbourProbability(solutions, j, i, amountOfBits, omega);
- }
- }
- }
- std::vector<double> matrixP(amountOfSolutions * amountOfSolutions);
- double sum = 0.0;
- //Symmettric
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- double value = (matrixProbability[x * amountOfSolutions + y] + matrixProbability[y * amountOfSolutions + x]) / 2.0;
- matrixP[x * amountOfSolutions + y] = value;
- sum += value;
- }
- }
- //Normalized
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- matrixP[x * amountOfSolutions + y] = matrixP[x * amountOfSolutions + y] / sum;
- }
- }
- //sample random solution
- std::vector<r2> ySolutions(amountOfSolutions);
- std::uniform_real_distribution<double> zeroDistr(-1.0, 1.0);
- std::for_each(ySolutions.begin(), ySolutions.end(), [&gen, &zeroDistr](r2& r) {r.x = zeroDistr(gen);r.y = zeroDistr(gen);});
- for (const r2& r : ySolutions) {
- std::cout << r.x << ", " << r.y << std::endl;
- }
- //generate q vec
- std::vector<double> matrixQ(amountOfSolutions * amountOfSolutions);
- updateQ(amountOfSolutions, matrixQ, ySolutions);
-
- /*std::cout << "MatrixP:" << std::endl;
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- std::cout << matrixP[x * amountOfSolutions + y] << " ";
- }
- std::cout << std::endl;
- }
- std::cout << "MatrixQ:" << std::endl;
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- std::cout << matrixQ[x * amountOfSolutions + y] << " ";
- }
- std::cout << std::endl;
- }
- std::cout << "Cost: " << cost(matrixP, matrixQ, amountOfSolutions) << std::endl;*/
- //update
- int iterations = 100;
- double learningRate = 10;
- std::vector<r2> update(ySolutions);
- for (int iter = 0; iter < iterations; iter++) {
- //updateQ
- updateQ(amountOfSolutions, matrixQ, ySolutions);
- for (size_t i = 0; i < amountOfSolutions; i++) {
- //computeGradient
- const r2 gradientFromI= computeGradient(i, matrixQ, matrixP, ySolutions, amountOfSolutions);
- r2& yi = ySolutions[i];
- //update Y
- r2& ui = update[i];
- ui.x = learningRate * gradientFromI.x + 0.5 * ui.x;
- ui.y = learningRate * gradientFromI.y + 0.5 * ui.y;
- yi.x = yi.x + ui.x;
- yi.y = yi.y + ui.y;
- }
- //
-
- //std::cout << "Cost: " << cost(matrixP, matrixQ, amountOfSolutions) << std::endl;
- std::cout << "Iter: " << iter << std::endl;
- for (const r2& r : ySolutions) {
- std::cout << r.x << ", " << r.y << std::endl;
- }
- getchar();
- }
- return 0;
- }
- void updateQ(const size_t& amountOfSolutions, std::vector<double>& matrixQ, std::vector<r2>& ySoltuion)
- {
- double sum = 0.0;
- for (size_t i = 0; i < amountOfSolutions; i++) {
- for (size_t j = 0; j < amountOfSolutions; j++) {
- if (j == i) {
- matrixQ[i * amountOfSolutions + j] = 0.0;
- }
- else {
- double value = calculate_tDistributed_q(ySoltuion, j, i);
- matrixQ[i * amountOfSolutions + j] = value;
- sum += value;
- }
- }
- }
- for (size_t i = 0; i < matrixQ.size(); i++) matrixQ[i] /= sum;
- }
- std::string convertToStdString(const std::vector<bool>& vec) {
- std::string result("");
- int count = 0;
- for (const bool& boolean : vec) {
- result += boolean ? "1" : "0";
- if (boolean) count++;
- }
- return result + ":" + std::to_string(count);
- }
- double euclidenDistance(const std::vector<bool>& vecA, const std::vector<bool>& vecB, int amountOfBits) {
- int count = 0;
- for (int i = 0; i < amountOfBits; i++) {
- if (vecA[i] ^ vecB[i]) count++;
- }
- return std::sqrt(count);
- }
- double neighbourProbability(const std::vector<std::vector<bool>>& solutions,const int j,const int i, int amountOfBits, double omega) {
- double numerator = std::exp(-euclidenDistance(solutions[i], solutions[j], amountOfBits)/(2 * omega * omega));
-
- double denominator = 0.0;
- for (int k = 0; k < solutions.size(); k++) {
- if (k == i) continue;
- denominator += std::exp(-euclidenDistance(solutions[i], solutions[k], amountOfBits) / (2 * omega * omega));
- }
- return numerator/ denominator;
- }
- double euclidenDistance(const r2& y1, const r2& y2) {
- return std::sqrt(std::pow(y1.x - y2.x, 2) + std::pow(y1.y - y2.y, 2));
- }
- double calculate_tDistributed_q(const std::vector<r2>& solutions, int j, int i) {
- double numerator = calculate_thing(solutions[i], solutions[j]);
- double denominator = 0.0;
- for (int k = 0; k < solutions.size(); k++) {
- if (k == i) continue;
- denominator += calculate_thing(solutions[i], solutions[k]);
- }
- return numerator / denominator;
- }
- double calculate_thing(const r2& y1, r2 y2) {
- return 1 / (1 + euclidenDistance(y1, y2));
- }
- double cost(const std::vector<double>& p, std::vector<double>& q, size_t amountOfSolutions) {
- double sum = 0.0;
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- sum += q[x * amountOfSolutions + y];
- }
- }
- for (size_t x = 0; x < amountOfSolutions; x++) {
- for (size_t y = 0; y < amountOfSolutions; y++) {
- q[x * amountOfSolutions + y] /= sum;
- }
- }
-
-
- double cost = 0.0;
- for (size_t i = 0; i < amountOfSolutions; i++) {
- for (size_t j = 0; j < amountOfSolutions; j++) {
- if (i == j) continue;
- double pji = p[j * amountOfSolutions + i];
- double value = pji * std::log(pji / q[j * amountOfSolutions + i]);
- cost += value;
- }
- }
- return cost;
- }
- r2 computeGradient(int i, const std::vector<double>& q, const std::vector<double>& p, const std::vector<r2>& ySolutions, int amountOfSolutions) {
- r2 value;
- const r2& yi = ySolutions[i];
- for (size_t j = 0; j < amountOfSolutions; j++) {
- if (j == i) continue;
- double scalar = p[j * amountOfSolutions + i] - q[j * amountOfSolutions + i];
- const r2& yj = ySolutions[j];
- value.x += scalar * (yi.x - yj.y);
- value.y += scalar * (yi.y - yj.y);
- }
- value.x *= 4;
- value.y *= 4;
- return value;
- }
|