pcap_processor.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. #include "pcap_processor.h"
  2. using namespace Tins;
  3. /**
  4. * Creates a new pcap_processor object.
  5. * @param path The path where the PCAP to get analyzed is locatated.
  6. */
  7. pcap_processor::pcap_processor(std::string path) : filePath(path) {
  8. }
  9. /**
  10. * Iterates over all packets, starting by packet no. 1, and stops if
  11. * after_packet_number equals the current packet number.
  12. * @param after_packet_number The packet position in the PCAP file whose timestamp is wanted.
  13. * @return The timestamp of the last processed packet plus 1 microsecond.
  14. */
  15. long double pcap_processor::get_timestamp_mu_sec(const int after_packet_number) {
  16. if (file_exists(filePath)) {
  17. FileSniffer sniffer(filePath);
  18. int current_packet = 1;
  19. for (SnifferIterator i = sniffer.begin(); i != sniffer.end(); i++) {
  20. if (after_packet_number == current_packet) {
  21. const Timestamp &ts = i->timestamp();
  22. return (long double) ((ts.seconds() * 1000000) + ts.microseconds() + 1);
  23. }
  24. current_packet++;
  25. }
  26. }
  27. return -1.0;
  28. }
  29. /**
  30. * Merges two PCAP files, given by paths in filePath and parameter pcap_path.
  31. * @param pcap_path The path to the file which should be merged with the loaded PCAP file.
  32. * @return The string containing the file path to the merged PCAP file.
  33. */
  34. std::string pcap_processor::merge_pcaps(const std::string pcap_path) {
  35. // Build new filename with timestamp
  36. // Build timestamp
  37. time_t curr_time = time(0);
  38. char buff[1024];
  39. struct tm *now = localtime(&curr_time);
  40. strftime(buff, sizeof(buff), "%Y%m%d-%H%M%S", now);
  41. std::string tstmp(buff);
  42. // Replace filename with 'timestamp_filename'
  43. std::string new_filepath = filePath;
  44. const std::string &newExt = "_" + tstmp + ".pcap";
  45. std::string::size_type h = new_filepath.rfind('.', new_filepath.length());
  46. if (h != std::string::npos) {
  47. new_filepath.replace(h, newExt.length(), newExt);
  48. } else {
  49. new_filepath.append(newExt);
  50. }
  51. FileSniffer sniffer_base(filePath);
  52. SnifferIterator iterator_base = sniffer_base.begin();
  53. FileSniffer sniffer_attack(pcap_path);
  54. SnifferIterator iterator_attack = sniffer_attack.begin();
  55. PacketWriter writer(new_filepath, PacketWriter::ETH2);
  56. bool all_attack_pkts_processed = false;
  57. // Go through base PCAP and merge packets by timestamp
  58. for (; iterator_base != sniffer_base.end();) {
  59. auto tstmp_base = (iterator_base->timestamp().seconds()) + (iterator_base->timestamp().microseconds()*1e-6);
  60. auto tstmp_attack = (iterator_attack->timestamp().seconds()) + (iterator_attack->timestamp().microseconds()*1e-6);
  61. if (!all_attack_pkts_processed && tstmp_attack <= tstmp_base) {
  62. try {
  63. writer.write(*iterator_attack);
  64. } catch (serialization_error) {
  65. std::cout << std::setprecision(15) << "Could not serialize attack packet with timestamp " << tstmp_attack << std::endl;
  66. }
  67. iterator_attack++;
  68. if (iterator_attack == sniffer_attack.end())
  69. all_attack_pkts_processed = true;
  70. } else {
  71. try {
  72. writer.write(*iterator_base);
  73. } catch (serialization_error) {
  74. std::cout << "Could not serialize base packet with timestamp " << std::setprecision(15) << tstmp_attack << std::endl;
  75. }
  76. iterator_base++;
  77. }
  78. }
  79. // This may happen if the base PCAP is smaller than the attack PCAP
  80. // In this case append the remaining packets of the attack PCAP
  81. for (; iterator_attack != sniffer_attack.end(); iterator_attack++) {
  82. try {
  83. writer.write(*iterator_attack);
  84. } catch (serialization_error) {
  85. auto tstmp_attack = (iterator_attack->timestamp().seconds()) + (iterator_attack->timestamp().microseconds()*1e-6);
  86. std::cout << "Could not serialize attack packet with timestamp " << std::setprecision(15) << tstmp_attack << std::endl;
  87. }
  88. }
  89. return new_filepath;
  90. }
  91. /**
  92. * Collect statistics of the loaded PCAP file. Calls for each packet the method process_packets.
  93. */
  94. void pcap_processor::collect_statistics() {
  95. // Only process PCAP if file exists
  96. if (file_exists(filePath)) {
  97. std::cout << "Loading pcap..." << std::endl;
  98. FileSniffer sniffer(filePath);
  99. // Aidmar - used to know the capture duration, thus choose a suitable interval
  100. FileSniffer snifferOverview(filePath);
  101. SnifferIterator i = sniffer.begin();
  102. Tins::Timestamp lastProcessedPacket;
  103. // Save timestamp of first packet
  104. stats.setTimestampFirstPacket(i->timestamp());
  105. // Aidmar
  106. int counter=0;
  107. int timeIntervalCounter = 1;
  108. int timeIntervalsNum = 100;
  109. std::chrono::microseconds intervalStartTimestamp = stats.getTimestampFirstPacket();
  110. std::chrono::microseconds firstTimestamp = stats.getTimestampFirstPacket();
  111. SnifferIterator lastpkt;
  112. for (SnifferIterator j = snifferOverview.begin(); j != snifferOverview.end(); j++) {lastpkt = j;}
  113. std::chrono::microseconds lastTimestamp = lastpkt->timestamp();
  114. std::chrono::microseconds captureDuration = lastTimestamp - firstTimestamp;
  115. long timeInterval_microsec = captureDuration.count() / timeIntervalsNum;
  116. std::chrono::duration<int, std::micro> timeInterval(timeInterval_microsec); // 10,000,000 = 10 sec
  117. std::cout << "Aidmar: First:" << firstTimestamp.count() << std::endl;
  118. std::cout << "Aidmar: Last:" << lastTimestamp.count() << std::endl;
  119. std::cout << "Aidmar: Capture duration:" << captureDuration.count() << std::endl;
  120. std::cout << "Aidmar: Interval duration:" << timeInterval_microsec << std::endl;
  121. //int pktsInterval = 1000;
  122. int previousPacketCount = 0;
  123. // Iterate over all packets and collect statistics
  124. for (; i != sniffer.end(); i++) {
  125. // Aidmar - packets interval
  126. //if(counter%pktsInterval==0){}
  127. // Aidmar
  128. std::chrono::microseconds lastPktTimestamp = i->timestamp();
  129. //Tins::Timestamp tt = i->timestamp();
  130. std::chrono::microseconds currentCaptureDuration = lastPktTimestamp - firstTimestamp;
  131. std::chrono::microseconds barrier = timeIntervalCounter*timeInterval;
  132. if(currentCaptureDuration>barrier){
  133. //std::cout<<"LastpkstTimstamp:" << lastPktTimestamp.count() << ", currentCaptureDuration:"<< currentCaptureDuration.count() << ", barrier:" <<barrier.count()<<", interval:" << timeIntervalCounter << ", interval time:"<<timeInterval.count()<<"\n";
  134. stats.addIntervalStat(timeInterval, intervalStartTimestamp, lastPktTimestamp, previousPacketCount);
  135. timeIntervalCounter++;
  136. intervalStartTimestamp = lastPktTimestamp;
  137. previousPacketCount = stats.getPacketCount();
  138. }
  139. stats.incrementPacketCount();
  140. this->process_packets(*i);
  141. lastProcessedPacket = i->timestamp();
  142. counter++;
  143. }
  144. // Save timestamp of last packet into statistics
  145. stats.setTimestampLastPacket(lastProcessedPacket);
  146. // Aidmar
  147. tests.get_checksum_incorrect_ratio();
  148. tests.get_payload_ratio();
  149. }
  150. }
  151. /**
  152. * Analyzes a given packet and collects statistical information.
  153. * @param pkt The packet to get analyzed.
  154. */
  155. void pcap_processor::process_packets(const Packet &pkt) {
  156. // Layer 2: Data Link Layer ------------------------
  157. std::string macAddressSender = "";
  158. std::string macAddressReceiver = "";
  159. const PDU *pdu_l2 = pkt.pdu();
  160. uint32_t sizeCurrentPacket = pdu_l2->size();
  161. if (pdu_l2->pdu_type() == PDU::ETHERNET_II) {
  162. EthernetII eth = (const EthernetII &) *pdu_l2;
  163. macAddressSender = eth.src_addr().to_string();
  164. macAddressReceiver = eth.dst_addr().to_string();
  165. sizeCurrentPacket = eth.size();
  166. }
  167. stats.addPacketSize(sizeCurrentPacket);
  168. // Layer 3 - Network -------------------------------
  169. const PDU *pdu_l3 = pkt.pdu()->inner_pdu();
  170. const PDU::PDUType pdu_l3_type = pdu_l3->pdu_type();
  171. std::string ipAddressSender;
  172. std::string ipAddressReceiver;
  173. // PDU is IPv4
  174. if (pdu_l3_type == PDU::PDUType::IP) {
  175. const IP &ipLayer = (const IP &) *pdu_l3;
  176. ipAddressSender = ipLayer.src_addr().to_string();
  177. ipAddressReceiver = ipLayer.dst_addr().to_string();
  178. // IP distribution
  179. stats.addIpStat_packetSent(filePath, ipAddressSender, ipLayer.dst_addr().to_string(), sizeCurrentPacket, pkt.timestamp());
  180. // TTL distribution
  181. stats.incrementTTLcount(ipAddressSender, ipLayer.ttl());
  182. // Protocol distribution
  183. stats.incrementProtocolCount(ipAddressSender, "IPv4");
  184. // Assign IP Address to MAC Address
  185. stats.assignMacAddress(ipAddressSender, macAddressSender);
  186. stats.assignMacAddress(ipAddressReceiver, macAddressReceiver);
  187. // Aidmar - Artifacts Tests: contemporary (ToS)
  188. tests.check_tos(ipLayer.tos());
  189. } // PDU is IPv6
  190. else if (pdu_l3_type == PDU::PDUType::IPv6) {
  191. const IPv6 &ipLayer = (const IPv6 &) *pdu_l3;
  192. ipAddressSender = ipLayer.src_addr().to_string();
  193. ipAddressReceiver = ipLayer.dst_addr().to_string();
  194. // IP distribution
  195. stats.addIpStat_packetSent(filePath, ipAddressSender, ipLayer.dst_addr().to_string(), sizeCurrentPacket, pkt.timestamp());
  196. // TTL distribution
  197. stats.incrementTTLcount(ipAddressSender, ipLayer.hop_limit());
  198. // Protocol distribution
  199. stats.incrementProtocolCount(ipAddressSender, "IPv6");
  200. // Assign IP Address to MAC Address
  201. stats.assignMacAddress(ipAddressSender, macAddressSender);
  202. stats.assignMacAddress(ipAddressReceiver, macAddressReceiver);
  203. } else {
  204. std::cout << "Unknown PDU Type on L3: " << pdu_l3_type << std::endl;
  205. }
  206. // Layer 4 - Transport -------------------------------
  207. const PDU *pdu_l4 = pdu_l3->inner_pdu();
  208. if (pdu_l4 != 0) {
  209. // Protocol distribution - layer 4
  210. PDU::PDUType p = pdu_l4->pdu_type();
  211. // Aidmar - Artifacts Tests: payload
  212. if (pdu_l3_type == PDU::PDUType::IP) {
  213. tests.check_payload(pdu_l4);
  214. }
  215. if (p == PDU::PDUType::TCP) {
  216. TCP tcpPkt = (const TCP &) *pdu_l4;
  217. // Aidmar - Artifacts Tests: checksum
  218. if (pdu_l3_type == PDU::PDUType::IP) {
  219. tests.check_checksum(ipAddressSender, ipAddressReceiver, tcpPkt);
  220. }
  221. stats.incrementProtocolCount(ipAddressSender, "TCP");
  222. // Aidmar
  223. // Conversation statistics
  224. stats.addConvStat(ipAddressSender, tcpPkt.sport(), ipAddressReceiver, tcpPkt.dport(), pkt.timestamp());
  225. // Aidmar
  226. // Check window size for SYN noly
  227. if(tcpPkt.get_flag(TCP::SYN)) {
  228. int win = tcpPkt.window();
  229. stats.incrementWinCount(ipAddressSender, win);
  230. }
  231. try {
  232. int val = tcpPkt.mss();
  233. stats.addMSS(ipAddressSender, val);
  234. // Aidmar
  235. // MSS distribution
  236. stats.incrementMSScount(ipAddressSender, val);
  237. } catch (Tins::option_not_found) {
  238. // Ignore MSS if option not set
  239. }
  240. stats.incrementPortCount(ipAddressSender, tcpPkt.sport(), ipAddressReceiver, tcpPkt.dport());
  241. // UDP Packet
  242. } else if (p == PDU::PDUType::UDP) {
  243. const UDP udpPkt = (const UDP &) *pdu_l4;
  244. stats.incrementProtocolCount(ipAddressSender, "UDP");
  245. stats.incrementPortCount(ipAddressSender, udpPkt.sport(), ipAddressReceiver, udpPkt.dport());
  246. } else if (p == PDU::PDUType::ICMP) {
  247. stats.incrementProtocolCount(ipAddressSender, "ICMP");
  248. } else if (p == PDU::PDUType::ICMPv6) {
  249. stats.incrementProtocolCount(ipAddressSender, "ICMPv6");
  250. }
  251. }
  252. }
  253. /**
  254. * Writes the collected statistic data into a SQLite3 database located at database_path. Uses an existing
  255. * database or, if not present, creates a new database.
  256. * @param database_path The path to the database file, ending with .sqlite3.
  257. */
  258. void pcap_processor::write_to_database(std::string database_path) {
  259. stats.writeToDatabase(database_path);
  260. }
  261. /**
  262. * Checks whether the file with the given file path exists.
  263. * @param filePath The path to the file to check.
  264. * @return True iff the file exists, otherweise False.
  265. */
  266. bool inline pcap_processor::file_exists(const std::string &filePath) {
  267. struct stat buffer;
  268. return stat(filePath.c_str(), &buffer) == 0;
  269. }
  270. /*
  271. * Comment in if executable should be build & run
  272. * Comment out if library should be build
  273. */
  274. ///*int main() {
  275. // std::cout << "Starting application." << std::endl;
  276. // //pcap_processor pcap = pcap_processor("/mnt/hgfs/datasets/95M.pcap");
  277. ////pcap_processor pcap = pcap_processor("/home/pjattke/temp/test_me_short.pcap");
  278. // pcap_processor pcap = pcap_processor("/tmp/tmp0hhz2oia");
  279. ////long double t = pcap.get_timestamp_mu_sec(87);
  280. //// std::cout << t << std::endl;
  281. //
  282. //// time_t start, end;
  283. //// time(&start);
  284. //// pcap.collect_statistics();
  285. //// time(&end);
  286. //// double dif = difftime(end, start);
  287. //// printf("Elapsed time is %.2lf seconds.", dif);
  288. //// pcap.stats.writeToDatabase("/home/pjattke/myDB.sqlite3");
  289. //
  290. // std::string path = pcap.merge_pcaps("/tmp/tmp0okkfdx_");
  291. // std::cout << path << std::endl;
  292. //
  293. //
  294. // return 0;
  295. //}*/
  296. /*
  297. * Comment out if executable should be build & run
  298. * Comment in if library should be build
  299. */
  300. #include <boost/python.hpp>
  301. using namespace boost::python;
  302. BOOST_PYTHON_MODULE (libpcapreader) {
  303. class_<pcap_processor>("pcap_processor", init<std::string>())
  304. .def("merge_pcaps", &pcap_processor::merge_pcaps)
  305. .def("collect_statistics", &pcap_processor::collect_statistics)
  306. .def("get_timestamp_mu_sec", &pcap_processor::get_timestamp_mu_sec)
  307. .def("write_to_database", &pcap_processor::write_to_database);
  308. }