123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902 |
- /* Copyright 2008, Google Inc.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Google Inc. nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * curve25519-donna: Curve25519 elliptic curve, public key function
- *
- * http://code.google.com/p/curve25519-donna/
- *
- * Adam Langley <agl@imperialviolet.org>
- *
- * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
- *
- * More information about curve25519 can be found here
- * http://cr.yp.to/ecdh.html
- *
- * djb's sample implementation of curve25519 is written in a special assembly
- * language called qhasm and uses the floating point registers.
- *
- * This is, almost, a clean room reimplementation from the curve25519 paper. It
- * uses many of the tricks described therein. Only the crecip function is taken
- * from the sample implementation.
- */
- #include <string.h>
- #include <stdint.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <errno.h>
- #ifdef _MSC_VER
- #define inline __inline
- #endif
- typedef uint8_t u8;
- typedef int32_t s32;
- typedef int64_t limb;
- /* Field element representation:
- *
- * Field elements are written as an array of signed, 64-bit limbs, least
- * significant first. The value of the field element is:
- * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
- *
- * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
- */
- /* Sum two numbers: output += in */
- static void fsum(limb *output, const limb *in)
- {
- unsigned i;
- for (i = 0; i < 10; i += 2)
- {
- output[0 + i] = (output[0 + i] + in[0 + i]);
- output[1 + i] = (output[1 + i] + in[1 + i]);
- }
- }
- /* Find the difference of two numbers: output = in - output
- * (note the order of the arguments!)
- */
- static void fdifference(limb *output, const limb *in)
- {
- unsigned i;
- for (i = 0; i < 10; ++i)
- {
- output[i] = (in[i] - output[i]);
- }
- }
- /* Multiply a number by a scalar: output = in * scalar */
- static void fscalar_product(limb *output, const limb *in, const limb scalar)
- {
- unsigned i;
- for (i = 0; i < 10; ++i)
- {
- output[i] = in[i] * scalar;
- }
- }
- /* Multiply two numbers: output = in2 * in
- *
- * output must be distinct to both inputs. The inputs are reduced coefficient
- * form, the output is not.
- */
- static void fproduct(limb *output, const limb *in2, const limb *in)
- {
- output[0] = ((limb)((s32)in2[0])) * ((s32)in[0]);
- output[1] = ((limb)((s32)in2[0])) * ((s32)in[1]) +
- ((limb)((s32)in2[1])) * ((s32)in[0]);
- output[2] = 2 * ((limb)((s32)in2[1])) * ((s32)in[1]) +
- ((limb)((s32)in2[0])) * ((s32)in[2]) +
- ((limb)((s32)in2[2])) * ((s32)in[0]);
- output[3] = ((limb)((s32)in2[1])) * ((s32)in[2]) +
- ((limb)((s32)in2[2])) * ((s32)in[1]) +
- ((limb)((s32)in2[0])) * ((s32)in[3]) +
- ((limb)((s32)in2[3])) * ((s32)in[0]);
- output[4] = ((limb)((s32)in2[2])) * ((s32)in[2]) +
- 2 * (((limb)((s32)in2[1])) * ((s32)in[3]) +
- ((limb)((s32)in2[3])) * ((s32)in[1])) +
- ((limb)((s32)in2[0])) * ((s32)in[4]) +
- ((limb)((s32)in2[4])) * ((s32)in[0]);
- output[5] = ((limb)((s32)in2[2])) * ((s32)in[3]) +
- ((limb)((s32)in2[3])) * ((s32)in[2]) +
- ((limb)((s32)in2[1])) * ((s32)in[4]) +
- ((limb)((s32)in2[4])) * ((s32)in[1]) +
- ((limb)((s32)in2[0])) * ((s32)in[5]) +
- ((limb)((s32)in2[5])) * ((s32)in[0]);
- output[6] = 2 * (((limb)((s32)in2[3])) * ((s32)in[3]) +
- ((limb)((s32)in2[1])) * ((s32)in[5]) +
- ((limb)((s32)in2[5])) * ((s32)in[1])) +
- ((limb)((s32)in2[2])) * ((s32)in[4]) +
- ((limb)((s32)in2[4])) * ((s32)in[2]) +
- ((limb)((s32)in2[0])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[0]);
- output[7] = ((limb)((s32)in2[3])) * ((s32)in[4]) +
- ((limb)((s32)in2[4])) * ((s32)in[3]) +
- ((limb)((s32)in2[2])) * ((s32)in[5]) +
- ((limb)((s32)in2[5])) * ((s32)in[2]) +
- ((limb)((s32)in2[1])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[1]) +
- ((limb)((s32)in2[0])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[0]);
- output[8] = ((limb)((s32)in2[4])) * ((s32)in[4]) +
- 2 * (((limb)((s32)in2[3])) * ((s32)in[5]) +
- ((limb)((s32)in2[5])) * ((s32)in[3]) +
- ((limb)((s32)in2[1])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[1])) +
- ((limb)((s32)in2[2])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[2]) +
- ((limb)((s32)in2[0])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[0]);
- output[9] = ((limb)((s32)in2[4])) * ((s32)in[5]) +
- ((limb)((s32)in2[5])) * ((s32)in[4]) +
- ((limb)((s32)in2[3])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[3]) +
- ((limb)((s32)in2[2])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[2]) +
- ((limb)((s32)in2[1])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[1]) +
- ((limb)((s32)in2[0])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[0]);
- output[10] = 2 * (((limb)((s32)in2[5])) * ((s32)in[5]) +
- ((limb)((s32)in2[3])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[3]) +
- ((limb)((s32)in2[1])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[1])) +
- ((limb)((s32)in2[4])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[4]) +
- ((limb)((s32)in2[2])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[2]);
- output[11] = ((limb)((s32)in2[5])) * ((s32)in[6]) +
- ((limb)((s32)in2[6])) * ((s32)in[5]) +
- ((limb)((s32)in2[4])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[4]) +
- ((limb)((s32)in2[3])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[3]) +
- ((limb)((s32)in2[2])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[2]);
- output[12] = ((limb)((s32)in2[6])) * ((s32)in[6]) +
- 2 * (((limb)((s32)in2[5])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[5]) +
- ((limb)((s32)in2[3])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[3])) +
- ((limb)((s32)in2[4])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[4]);
- output[13] = ((limb)((s32)in2[6])) * ((s32)in[7]) +
- ((limb)((s32)in2[7])) * ((s32)in[6]) +
- ((limb)((s32)in2[5])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[5]) +
- ((limb)((s32)in2[4])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[4]);
- output[14] = 2 * (((limb)((s32)in2[7])) * ((s32)in[7]) +
- ((limb)((s32)in2[5])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[5])) +
- ((limb)((s32)in2[6])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[6]);
- output[15] = ((limb)((s32)in2[7])) * ((s32)in[8]) +
- ((limb)((s32)in2[8])) * ((s32)in[7]) +
- ((limb)((s32)in2[6])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[6]);
- output[16] = ((limb)((s32)in2[8])) * ((s32)in[8]) +
- 2 * (((limb)((s32)in2[7])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[7]));
- output[17] = ((limb)((s32)in2[8])) * ((s32)in[9]) +
- ((limb)((s32)in2[9])) * ((s32)in[8]);
- output[18] = 2 * ((limb)((s32)in2[9])) * ((s32)in[9]);
- }
- /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
- static void freduce_degree(limb *output)
- {
- /* Each of these shifts and adds ends up multiplying the value by 19. */
- output[8] += output[18] << 4;
- output[8] += output[18] << 1;
- output[8] += output[18];
- output[7] += output[17] << 4;
- output[7] += output[17] << 1;
- output[7] += output[17];
- output[6] += output[16] << 4;
- output[6] += output[16] << 1;
- output[6] += output[16];
- output[5] += output[15] << 4;
- output[5] += output[15] << 1;
- output[5] += output[15];
- output[4] += output[14] << 4;
- output[4] += output[14] << 1;
- output[4] += output[14];
- output[3] += output[13] << 4;
- output[3] += output[13] << 1;
- output[3] += output[13];
- output[2] += output[12] << 4;
- output[2] += output[12] << 1;
- output[2] += output[12];
- output[1] += output[11] << 4;
- output[1] += output[11] << 1;
- output[1] += output[11];
- output[0] += output[10] << 4;
- output[0] += output[10] << 1;
- output[0] += output[10];
- }
- #if (-1 & 3) != 3
- #error "This code only works on a two's complement system"
- #endif
- /* return v / 2^26, using only shifts and adds. */
- static inline limb
- div_by_2_26(const limb v)
- {
- /* High word of v; no shift needed*/
- const uint32_t highword = (uint32_t)(((uint64_t)v) >> 32);
- /* Set to all 1s if v was negative; else set to 0s. */
- const int32_t sign = ((int32_t)highword) >> 31;
- /* Set to 0x3ffffff if v was negative; else set to 0. */
- const int32_t roundoff = ((uint32_t)sign) >> 6;
- /* Should return v / (1<<26) */
- return (v + roundoff) >> 26;
- }
- /* return v / (2^25), using only shifts and adds. */
- static inline limb
- div_by_2_25(const limb v)
- {
- /* High word of v; no shift needed*/
- const uint32_t highword = (uint32_t)(((uint64_t)v) >> 32);
- /* Set to all 1s if v was negative; else set to 0s. */
- const int32_t sign = ((int32_t)highword) >> 31;
- /* Set to 0x1ffffff if v was negative; else set to 0. */
- const int32_t roundoff = ((uint32_t)sign) >> 7;
- /* Should return v / (1<<25) */
- return (v + roundoff) >> 25;
- }
- static inline s32
- div_s32_by_2_25(const s32 v)
- {
- const s32 roundoff = ((uint32_t)(v >> 31)) >> 7;
- return (v + roundoff) >> 25;
- }
- /* Reduce all coefficients of the short form input so that |x| < 2^26.
- *
- * On entry: |output[i]| < 2^62
- */
- static void freduce_coefficients(limb *output)
- {
- unsigned i;
- output[10] = 0;
- for (i = 0; i < 10; i += 2)
- {
- limb over = div_by_2_26(output[i]);
- output[i] -= over << 26;
- output[i + 1] += over;
- over = div_by_2_25(output[i + 1]);
- output[i + 1] -= over << 25;
- output[i + 2] += over;
- }
- /* Now |output[10]| < 2 ^ 38 and all other coefficients are reduced. */
- output[0] += output[10] << 4;
- output[0] += output[10] << 1;
- output[0] += output[10];
- output[10] = 0;
- /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19 * 2^38
- * So |over| will be no more than 77825 */
- {
- limb over = div_by_2_26(output[0]);
- output[0] -= over << 26;
- output[1] += over;
- }
- /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 77825
- * So |over| will be no more than 1. */
- {
- /* output[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */
- s32 over32 = div_s32_by_2_25((s32)output[1]);
- output[1] -= over32 << 25;
- output[2] += over32;
- }
- /* Finally, output[0,1,3..9] are reduced, and output[2] is "nearly reduced":
- * we have |output[2]| <= 2^26. This is good enough for all of our math,
- * but it will require an extra freduce_coefficients before fcontract. */
- }
- /* A helpful wrapper around fproduct: output = in * in2.
- *
- * output must be distinct to both inputs. The output is reduced degree and
- * reduced coefficient.
- */
- static void
- fmul(limb *output, const limb *in, const limb *in2)
- {
- limb t[19];
- fproduct(t, in, in2);
- freduce_degree(t);
- freduce_coefficients(t);
- memcpy(output, t, sizeof(limb) * 10);
- }
- static void fsquare_inner(limb *output, const limb *in)
- {
- output[0] = ((limb)((s32)in[0])) * ((s32)in[0]);
- output[1] = 2 * ((limb)((s32)in[0])) * ((s32)in[1]);
- output[2] = 2 * (((limb)((s32)in[1])) * ((s32)in[1]) +
- ((limb)((s32)in[0])) * ((s32)in[2]));
- output[3] = 2 * (((limb)((s32)in[1])) * ((s32)in[2]) +
- ((limb)((s32)in[0])) * ((s32)in[3]));
- output[4] = ((limb)((s32)in[2])) * ((s32)in[2]) +
- 4 * ((limb)((s32)in[1])) * ((s32)in[3]) +
- 2 * ((limb)((s32)in[0])) * ((s32)in[4]);
- output[5] = 2 * (((limb)((s32)in[2])) * ((s32)in[3]) +
- ((limb)((s32)in[1])) * ((s32)in[4]) +
- ((limb)((s32)in[0])) * ((s32)in[5]));
- output[6] = 2 * (((limb)((s32)in[3])) * ((s32)in[3]) +
- ((limb)((s32)in[2])) * ((s32)in[4]) +
- ((limb)((s32)in[0])) * ((s32)in[6]) +
- 2 * ((limb)((s32)in[1])) * ((s32)in[5]));
- output[7] = 2 * (((limb)((s32)in[3])) * ((s32)in[4]) +
- ((limb)((s32)in[2])) * ((s32)in[5]) +
- ((limb)((s32)in[1])) * ((s32)in[6]) +
- ((limb)((s32)in[0])) * ((s32)in[7]));
- output[8] = ((limb)((s32)in[4])) * ((s32)in[4]) +
- 2 * (((limb)((s32)in[2])) * ((s32)in[6]) +
- ((limb)((s32)in[0])) * ((s32)in[8]) +
- 2 * (((limb)((s32)in[1])) * ((s32)in[7]) +
- ((limb)((s32)in[3])) * ((s32)in[5])));
- output[9] = 2 * (((limb)((s32)in[4])) * ((s32)in[5]) +
- ((limb)((s32)in[3])) * ((s32)in[6]) +
- ((limb)((s32)in[2])) * ((s32)in[7]) +
- ((limb)((s32)in[1])) * ((s32)in[8]) +
- ((limb)((s32)in[0])) * ((s32)in[9]));
- output[10] = 2 * (((limb)((s32)in[5])) * ((s32)in[5]) +
- ((limb)((s32)in[4])) * ((s32)in[6]) +
- ((limb)((s32)in[2])) * ((s32)in[8]) +
- 2 * (((limb)((s32)in[3])) * ((s32)in[7]) +
- ((limb)((s32)in[1])) * ((s32)in[9])));
- output[11] = 2 * (((limb)((s32)in[5])) * ((s32)in[6]) +
- ((limb)((s32)in[4])) * ((s32)in[7]) +
- ((limb)((s32)in[3])) * ((s32)in[8]) +
- ((limb)((s32)in[2])) * ((s32)in[9]));
- output[12] = ((limb)((s32)in[6])) * ((s32)in[6]) +
- 2 * (((limb)((s32)in[4])) * ((s32)in[8]) +
- 2 * (((limb)((s32)in[5])) * ((s32)in[7]) +
- ((limb)((s32)in[3])) * ((s32)in[9])));
- output[13] = 2 * (((limb)((s32)in[6])) * ((s32)in[7]) +
- ((limb)((s32)in[5])) * ((s32)in[8]) +
- ((limb)((s32)in[4])) * ((s32)in[9]));
- output[14] = 2 * (((limb)((s32)in[7])) * ((s32)in[7]) +
- ((limb)((s32)in[6])) * ((s32)in[8]) +
- 2 * ((limb)((s32)in[5])) * ((s32)in[9]));
- output[15] = 2 * (((limb)((s32)in[7])) * ((s32)in[8]) +
- ((limb)((s32)in[6])) * ((s32)in[9]));
- output[16] = ((limb)((s32)in[8])) * ((s32)in[8]) +
- 4 * ((limb)((s32)in[7])) * ((s32)in[9]);
- output[17] = 2 * ((limb)((s32)in[8])) * ((s32)in[9]);
- output[18] = 2 * ((limb)((s32)in[9])) * ((s32)in[9]);
- }
- static void
- fsquare(limb *output, const limb *in)
- {
- limb t[19];
- fsquare_inner(t, in);
- freduce_degree(t);
- freduce_coefficients(t);
- memcpy(output, t, sizeof(limb) * 10);
- }
- /* Take a little-endian, 32-byte number and expand it into polynomial form */
- static void
- fexpand(limb *output, const u8 *input)
- {
- #define F(n, start, shift, mask) \
- output[n] = ((((limb)input[start + 0]) | \
- ((limb)input[start + 1]) << 8 | \
- ((limb)input[start + 2]) << 16 | \
- ((limb)input[start + 3]) << 24) >> \
- shift) & \
- mask;
- F(0, 0, 0, 0x3ffffff);
- F(1, 3, 2, 0x1ffffff);
- F(2, 6, 3, 0x3ffffff);
- F(3, 9, 5, 0x1ffffff);
- F(4, 12, 6, 0x3ffffff);
- F(5, 16, 0, 0x1ffffff);
- F(6, 19, 1, 0x3ffffff);
- F(7, 22, 3, 0x1ffffff);
- F(8, 25, 4, 0x3ffffff);
- F(9, 28, 6, 0x3ffffff);
- #undef F
- }
- #if (-32 >> 1) != -16
- #error "This code only works when >> does sign-extension on negative numbers"
- #endif
- /* Take a fully reduced polynomial form number and contract it into a
- * little-endian, 32-byte array
- */
- static void
- fcontract(u8 *output, limb *input)
- {
- int i;
- int j;
- for (j = 0; j < 2; ++j)
- {
- for (i = 0; i < 9; ++i)
- {
- if ((i & 1) == 1)
- {
- /* This calculation is a time-invariant way to make input[i] positive
- by borrowing from the next-larger limb.
- */
- const s32 mask = (s32)(input[i]) >> 31;
- const s32 carry = -(((s32)(input[i]) & mask) >> 25);
- input[i] = (s32)(input[i]) + (carry << 25);
- input[i + 1] = (s32)(input[i + 1]) - carry;
- }
- else
- {
- const s32 mask = (s32)(input[i]) >> 31;
- const s32 carry = -(((s32)(input[i]) & mask) >> 26);
- input[i] = (s32)(input[i]) + (carry << 26);
- input[i + 1] = (s32)(input[i + 1]) - carry;
- }
- }
- {
- const s32 mask = (s32)(input[9]) >> 31;
- const s32 carry = -(((s32)(input[9]) & mask) >> 25);
- input[9] = (s32)(input[9]) + (carry << 25);
- input[0] = (s32)(input[0]) - (carry * 19);
- }
- }
- /* The first borrow-propagation pass above ended with every limb
- except (possibly) input[0] non-negative.
- Since each input limb except input[0] is decreased by at most 1
- by a borrow-propagation pass, the second borrow-propagation pass
- could only have wrapped around to decrease input[0] again if the
- first pass left input[0] negative *and* input[1] through input[9]
- were all zero. In that case, input[1] is now 2^25 - 1, and this
- last borrow-propagation step will leave input[1] non-negative.
- */
- {
- const s32 mask = (s32)(input[0]) >> 31;
- const s32 carry = -(((s32)(input[0]) & mask) >> 26);
- input[0] = (s32)(input[0]) + (carry << 26);
- input[1] = (s32)(input[1]) - carry;
- }
- /* Both passes through the above loop, plus the last 0-to-1 step, are
- necessary: if input[9] is -1 and input[0] through input[8] are 0,
- negative values will remain in the array until the end.
- */
- input[1] <<= 2;
- input[2] <<= 3;
- input[3] <<= 5;
- input[4] <<= 6;
- input[6] <<= 1;
- input[7] <<= 3;
- input[8] <<= 4;
- input[9] <<= 6;
- #define F(i, s) \
- output[s + 0] |= input[i] & 0xff; \
- output[s + 1] = (input[i] >> 8) & 0xff; \
- output[s + 2] = (input[i] >> 16) & 0xff; \
- output[s + 3] = (input[i] >> 24) & 0xff;
- output[0] = 0;
- output[16] = 0;
- F(0, 0);
- F(1, 3);
- F(2, 6);
- F(3, 9);
- F(4, 12);
- F(5, 16);
- F(6, 19);
- F(7, 22);
- F(8, 25);
- F(9, 28);
- #undef F
- }
- /* Input: Q, Q', Q-Q'
- * Output: 2Q, Q+Q'
- *
- * x2 z3: long form
- * x3 z3: long form
- * x z: short form, destroyed
- * xprime zprime: short form, destroyed
- * qmqp: short form, preserved
- */
- static void fmonty(limb *x2, limb *z2, /* output 2Q */
- limb *x3, limb *z3, /* output Q + Q' */
- limb *x, limb *z, /* input Q */
- limb *xprime, limb *zprime, /* input Q' */
- const limb *qmqp /* input Q - Q' */)
- {
- limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
- zzprime[19], zzzprime[19], xxxprime[19];
- memcpy(origx, x, 10 * sizeof(limb));
- fsum(x, z);
- fdifference(z, origx); // does x - z
- memcpy(origxprime, xprime, sizeof(limb) * 10);
- fsum(xprime, zprime);
- fdifference(zprime, origxprime);
- fproduct(xxprime, xprime, z);
- fproduct(zzprime, x, zprime);
- freduce_degree(xxprime);
- freduce_coefficients(xxprime);
- freduce_degree(zzprime);
- freduce_coefficients(zzprime);
- memcpy(origxprime, xxprime, sizeof(limb) * 10);
- fsum(xxprime, zzprime);
- fdifference(zzprime, origxprime);
- fsquare(xxxprime, xxprime);
- fsquare(zzzprime, zzprime);
- fproduct(zzprime, zzzprime, qmqp);
- freduce_degree(zzprime);
- freduce_coefficients(zzprime);
- memcpy(x3, xxxprime, sizeof(limb) * 10);
- memcpy(z3, zzprime, sizeof(limb) * 10);
- fsquare(xx, x);
- fsquare(zz, z);
- fproduct(x2, xx, zz);
- freduce_degree(x2);
- freduce_coefficients(x2);
- fdifference(zz, xx); // does zz = xx - zz
- memset(zzz + 10, 0, sizeof(limb) * 9);
- fscalar_product(zzz, zz, 121665);
- /* No need to call freduce_degree here:
- fscalar_product doesn't increase the degree of its input. */
- freduce_coefficients(zzz);
- fsum(zzz, xx);
- fproduct(z2, zz, zzz);
- freduce_degree(z2);
- freduce_coefficients(z2);
- }
- /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
- * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
- * side-channel attacks.
- *
- * NOTE that this function requires that 'iswap' be 1 or 0; other values give
- * wrong results. Also, the two limb arrays must be in reduced-coefficient,
- * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
- * and all all values in a[0..9],b[0..9] must have magnitude less than
- * INT32_MAX.
- */
- static void
- swap_conditional(limb a[19], limb b[19], limb iswap)
- {
- unsigned i;
- const s32 swap = (s32)-iswap;
- for (i = 0; i < 10; ++i)
- {
- const s32 x = swap & (((s32)a[i]) ^ ((s32)b[i]));
- a[i] = ((s32)a[i]) ^ x;
- b[i] = ((s32)b[i]) ^ x;
- }
- }
- /* Calculates nQ where Q is the x-coordinate of a point on the curve
- *
- * resultx/resultz: the x coordinate of the resulting curve point (short form)
- * n: a little endian, 32-byte number
- * q: a point of the curve (short form)
- */
- static void
- cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q)
- {
- limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
- limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
- limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
- limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
- unsigned i, j;
- memcpy(nqpqx, q, sizeof(limb) * 10);
- for (i = 0; i < 32; ++i)
- {
- u8 byte = n[31 - i];
- for (j = 0; j < 8; ++j)
- {
- const limb bit = byte >> 7;
- swap_conditional(nqx, nqpqx, bit);
- swap_conditional(nqz, nqpqz, bit);
- fmonty(nqx2, nqz2,
- nqpqx2, nqpqz2,
- nqx, nqz,
- nqpqx, nqpqz,
- q);
- swap_conditional(nqx2, nqpqx2, bit);
- swap_conditional(nqz2, nqpqz2, bit);
- t = nqx;
- nqx = nqx2;
- nqx2 = t;
- t = nqz;
- nqz = nqz2;
- nqz2 = t;
- t = nqpqx;
- nqpqx = nqpqx2;
- nqpqx2 = t;
- t = nqpqz;
- nqpqz = nqpqz2;
- nqpqz2 = t;
- byte <<= 1;
- }
- }
- memcpy(resultx, nqx, sizeof(limb) * 10);
- memcpy(resultz, nqz, sizeof(limb) * 10);
- }
- // -----------------------------------------------------------------------------
- // Shamelessly copied from djb's code
- // -----------------------------------------------------------------------------
- static void
- crecip(limb *out, const limb *z)
- {
- limb z2[10];
- limb z9[10];
- limb z11[10];
- limb z2_5_0[10];
- limb z2_10_0[10];
- limb z2_20_0[10];
- limb z2_50_0[10];
- limb z2_100_0[10];
- limb t0[10];
- limb t1[10];
- int i;
- /* 2 */ fsquare(z2, z);
- /* 4 */ fsquare(t1, z2);
- /* 8 */ fsquare(t0, t1);
- /* 9 */ fmul(z9, t0, z);
- /* 11 */ fmul(z11, z9, z2);
- /* 22 */ fsquare(t0, z11);
- /* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9);
- /* 2^6 - 2^1 */ fsquare(t0, z2_5_0);
- /* 2^7 - 2^2 */ fsquare(t1, t0);
- /* 2^8 - 2^3 */ fsquare(t0, t1);
- /* 2^9 - 2^4 */ fsquare(t1, t0);
- /* 2^10 - 2^5 */ fsquare(t0, t1);
- /* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0);
- /* 2^11 - 2^1 */ fsquare(t0, z2_10_0);
- /* 2^12 - 2^2 */ fsquare(t1, t0);
- /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2)
- {
- fsquare(t0, t1);
- fsquare(t1, t0);
- }
- /* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0);
- /* 2^21 - 2^1 */ fsquare(t0, z2_20_0);
- /* 2^22 - 2^2 */ fsquare(t1, t0);
- /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2)
- {
- fsquare(t0, t1);
- fsquare(t1, t0);
- }
- /* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0);
- /* 2^41 - 2^1 */ fsquare(t1, t0);
- /* 2^42 - 2^2 */ fsquare(t0, t1);
- /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2)
- {
- fsquare(t1, t0);
- fsquare(t0, t1);
- }
- /* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0);
- /* 2^51 - 2^1 */ fsquare(t0, z2_50_0);
- /* 2^52 - 2^2 */ fsquare(t1, t0);
- /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2)
- {
- fsquare(t0, t1);
- fsquare(t1, t0);
- }
- /* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0);
- /* 2^101 - 2^1 */ fsquare(t1, z2_100_0);
- /* 2^102 - 2^2 */ fsquare(t0, t1);
- /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2)
- {
- fsquare(t1, t0);
- fsquare(t0, t1);
- }
- /* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0);
- /* 2^201 - 2^1 */ fsquare(t0, t1);
- /* 2^202 - 2^2 */ fsquare(t1, t0);
- /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2)
- {
- fsquare(t0, t1);
- fsquare(t1, t0);
- }
- /* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0);
- /* 2^251 - 2^1 */ fsquare(t1, t0);
- /* 2^252 - 2^2 */ fsquare(t0, t1);
- /* 2^253 - 2^3 */ fsquare(t1, t0);
- /* 2^254 - 2^4 */ fsquare(t0, t1);
- /* 2^255 - 2^5 */ fsquare(t1, t0);
- /* 2^255 - 21 */ fmul(out, t1, z11);
- }
- int curve25519_donna(u8 *, const u8 *, const u8 *);
- int curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint)
- {
- limb bp[10], x[10], z[11], zmone[10];
- uint8_t e[32];
- int i;
- for (i = 0; i < 32; ++i)
- e[i] = secret[i];
- e[0] &= 248;
- e[31] &= 127;
- e[31] |= 64;
- fexpand(bp, basepoint);
- cmult(x, z, e, bp);
- crecip(zmone, z);
- fmul(z, x, zmone);
- freduce_coefficients(z);
- fcontract(mypublic, z);
- return 0;
- }
- /// returns 0 for '=' or unrecognized characters, not a problem since PEM is well constrained.
- static int base64_value(int c)
- {
- if (c >= 'A' && c <= 'Z')
- return c - 'A';
- if (c >= 'a' && c <= 'z')
- return 26 + c - 'a';
- if (c >= '0' && c <= '9')
- return 52 + c - '0';
- if (c == '+')
- return 62;
- if (c == '/')
- return 63;
- return 0x1000;
- }
- /**
- * @param[in] data the base64 encoded string
- * @param[out] data the decoded result
- * @param[in] len the length of base64 encoded data
- * @param[out] len the length of decoded result
- */
- static void base64_decode(u8 *data, int *len)
- {
- int read = 0;
- int write = 0;
- int state[4];
- while (read < *len)
- {
- state[read % 4] = base64_value(data[read]);
- if (state[read % 4] == 0x1000)
- {
- break;
- }
- if ((read % 4) == 3)
- {
- data[write++] = state[0] << 2 | state[1] >> 4;
- data[write++] = state[1] << 4 | state[2] >> 2;
- data[write++] = state[2] << 6 | state[3] >> 0;
- }
- read++;
- }
- switch (read % 4)
- {
- case 2:
- data[write++] = state[0] << 2 | state[1] >> 4;
- break;
- case 3:
- data[write++] = state[0] << 2 | state[1] >> 4;
- data[write++] = state[1] << 4 | state[2] >> 2;
- }
- *len = write;
- }
- /**
- * reads the 32-byte key from a PEM file, takes advantage of the
- * fact that the last 32 bytes of encoded DER data are the key in
- * both the private and public key forms.
- */
- void read_key(const char *filename, u8 *key)
- {
- FILE *f = fopen(filename, "r");
- if (!f)
- {
- fprintf(stderr, "Unable to open %s: %s\n", filename, strerror(errno));
- exit(1);
- }
- char line[512] = {};
- fgets(line, sizeof(line), f);
- if (strncmp(line, "-----BEGIN ", sizeof("-----BEGIN ") - 1) != 0)
- {
- fprintf(stderr, "File %s is not a PEM file\n", filename);
- exit(1);
- }
- fgets(line, sizeof(line), f);
- line[strcspn(line, "\r\n")] = '\0';
- int len = strlen(line);
- base64_decode((u8 *)line, &len);
- if (len < 32)
- {
- fprintf(stderr, "Short read from %s\n", filename);
- exit(1);
- }
- memcpy(key, line + (len - 32), 32);
- fclose(f);
- return;
- }
- int main(int argc, char **argv)
- {
- u8 privkey[32];
- u8 pubkey[32];
- u8 result[32];
- if (argc != 3)
- {
- fprintf(stderr, "Usage: %s [privkey] [pubkey]\n", argv[0]);
- exit(1);
- }
- read_key(argv[1], privkey);
- read_key(argv[2], pubkey);
- curve25519_donna(result, privkey, pubkey);
- // fwrite(result, 32, 1, stdout);
- for (int i = 0; i < 32; i++)
- {
- printf("%d ", result[i]);
- }
- exit(0);
- }
|