123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796 |
- # -*- coding: utf-8 -*-
- # ===================================================================
- #
- # Copyright (c) 2016, Legrandin <helderijs@gmail.com>
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in
- # the documentation and/or other materials provided with the
- # distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- # ===================================================================
- __all__ = ['generate', 'construct', 'import_key',
- 'RsaKey', 'oid']
- import binascii
- import struct
- from tls.Crypto import Random
- from tls.Crypto.Util.py3compat import tobytes, bord, tostr
- from tls.Crypto.Util.asn1 import DerSequence
- from tls.Crypto.Math.Numbers import Integer
- from tls.Crypto.Math.Primality import (test_probable_prime,
- generate_probable_prime, COMPOSITE)
- from tls.Crypto.PublicKey import (_expand_subject_public_key_info,
- _create_subject_public_key_info,
- _extract_subject_public_key_info)
- class RsaKey(object):
- r"""Class defining an actual RSA key.
- Do not instantiate directly.
- Use :func:`generate`, :func:`construct` or :func:`import_key` instead.
- :ivar n: RSA modulus
- :vartype n: integer
- :ivar e: RSA public exponent
- :vartype e: integer
- :ivar d: RSA private exponent
- :vartype d: integer
- :ivar p: First factor of the RSA modulus
- :vartype p: integer
- :ivar q: Second factor of the RSA modulus
- :vartype q: integer
- :ivar u: Chinese remainder component (:math:`p^{-1} \text{mod } q`)
- :vartype q: integer
- """
- def __init__(self, **kwargs):
- """Build an RSA key.
- :Keywords:
- n : integer
- The modulus.
- e : integer
- The public exponent.
- d : integer
- The private exponent. Only required for private keys.
- p : integer
- The first factor of the modulus. Only required for private keys.
- q : integer
- The second factor of the modulus. Only required for private keys.
- u : integer
- The CRT coefficient (inverse of p modulo q). Only required for
- private keys.
- """
- input_set = set(kwargs.keys())
- public_set = set(('n', 'e'))
- private_set = public_set | set(('p', 'q', 'd', 'u'))
- if input_set not in (private_set, public_set):
- raise ValueError("Some RSA components are missing")
- for component, value in kwargs.items():
- setattr(self, "_" + component, value)
- if input_set == private_set:
- self._dp = self._d % (self._p - 1) # = (e⁻¹) mod (p-1)
- self._dq = self._d % (self._q - 1) # = (e⁻¹) mod (q-1)
- @property
- def n(self):
- return int(self._n)
- @property
- def e(self):
- return int(self._e)
- @property
- def d(self):
- if not self.has_private():
- raise AttributeError("No private exponent available for public keys")
- return int(self._d)
- @property
- def p(self):
- if not self.has_private():
- raise AttributeError("No CRT component 'p' available for public keys")
- return int(self._p)
- @property
- def q(self):
- if not self.has_private():
- raise AttributeError("No CRT component 'q' available for public keys")
- return int(self._q)
- @property
- def u(self):
- if not self.has_private():
- raise AttributeError("No CRT component 'u' available for public keys")
- return int(self._u)
- def size_in_bits(self):
- """Size of the RSA modulus in bits"""
- return self._n.size_in_bits()
- def size_in_bytes(self):
- """The minimal amount of bytes that can hold the RSA modulus"""
- return (self._n.size_in_bits() - 1) // 8 + 1
- def _encrypt(self, plaintext):
- if not 0 <= plaintext < self._n:
- raise ValueError("Plaintext too large")
- return int(pow(Integer(plaintext), self._e, self._n))
- def _decrypt(self, ciphertext):
- if not 0 <= ciphertext < self._n:
- raise ValueError("Ciphertext too large")
- if not self.has_private():
- raise TypeError("This is not a private key")
- # Blinded RSA decryption (to prevent timing attacks):
- # Step 1: Generate random secret blinding factor r,
- # such that 0 < r < n-1
- r = Integer.random_range(min_inclusive=1, max_exclusive=self._n)
- # Step 2: Compute c' = c * r**e mod n
- cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n
- # Step 3: Compute m' = c'**d mod n (normal RSA decryption)
- m1 = pow(cp, self._dp, self._p)
- m2 = pow(cp, self._dq, self._q)
- h = ((m2 - m1) * self._u) % self._q
- mp = h * self._p + m1
- # Step 4: Compute m = m**(r-1) mod n
- result = (r.inverse(self._n) * mp) % self._n
- # Verify no faults occurred
- if ciphertext != pow(result, self._e, self._n):
- raise ValueError("Fault detected in RSA decryption")
- return result
- def has_private(self):
- """Whether this is an RSA private key"""
- return hasattr(self, "_d")
- def can_encrypt(self): # legacy
- return True
- def can_sign(self): # legacy
- return True
- def publickey(self):
- """A matching RSA public key.
- Returns:
- a new :class:`RsaKey` object
- """
- return RsaKey(n=self._n, e=self._e)
- def __eq__(self, other):
- if self.has_private() != other.has_private():
- return False
- if self.n != other.n or self.e != other.e:
- return False
- if not self.has_private():
- return True
- return (self.d == other.d)
- def __ne__(self, other):
- return not (self == other)
- def __getstate__(self):
- # RSA key is not pickable
- from pickle import PicklingError
- raise PicklingError
- def __repr__(self):
- if self.has_private():
- extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p),
- int(self._q), int(self._u))
- else:
- extra = ""
- return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra)
- def __str__(self):
- if self.has_private():
- key_type = "Private"
- else:
- key_type = "Public"
- return "%s RSA key at 0x%X" % (key_type, id(self))
- def export_key(self, format='PEM', passphrase=None, pkcs=1,
- protection=None, randfunc=None):
- """Export this RSA key.
- Args:
- format (string):
- The format to use for wrapping the key:
- - *'PEM'*. (*Default*) Text encoding, done according to `RFC1421`_/`RFC1423`_.
- - *'DER'*. Binary encoding.
- - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
- Only suitable for public keys (not private keys).
- passphrase (string):
- (*For private keys only*) The pass phrase used for protecting the output.
- pkcs (integer):
- (*For private keys only*) The ASN.1 structure to use for
- serializing the key. Note that even in case of PEM
- encoding, there is an inner ASN.1 DER structure.
- With ``pkcs=1`` (*default*), the private key is encoded in a
- simple `PKCS#1`_ structure (``RSAPrivateKey``).
- With ``pkcs=8``, the private key is encoded in a `PKCS#8`_ structure
- (``PrivateKeyInfo``).
- .. note::
- This parameter is ignored for a public key.
- For DER and PEM, an ASN.1 DER ``SubjectPublicKeyInfo``
- structure is always used.
- protection (string):
- (*For private keys only*)
- The encryption scheme to use for protecting the private key.
- If ``None`` (default), the behavior depends on :attr:`format`:
- - For *'DER'*, the *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC*
- scheme is used. The following operations are performed:
- 1. A 16 byte Triple DES key is derived from the passphrase
- using :func:`Crypto.Protocol.KDF.PBKDF2` with 8 bytes salt,
- and 1 000 iterations of :mod:`Crypto.Hash.HMAC`.
- 2. The private key is encrypted using CBC.
- 3. The encrypted key is encoded according to PKCS#8.
- - For *'PEM'*, the obsolete PEM encryption scheme is used.
- It is based on MD5 for key derivation, and Triple DES for encryption.
- Specifying a value for :attr:`protection` is only meaningful for PKCS#8
- (that is, ``pkcs=8``) and only if a pass phrase is present too.
- The supported schemes for PKCS#8 are listed in the
- :mod:`Crypto.IO.PKCS8` module (see :attr:`wrap_algo` parameter).
- randfunc (callable):
- A function that provides random bytes. Only used for PEM encoding.
- The default is :func:`Crypto.Random.get_random_bytes`.
- Returns:
- byte string: the encoded key
- Raises:
- ValueError:when the format is unknown or when you try to encrypt a private
- key with *DER* format and PKCS#1.
- .. warning::
- If you don't provide a pass phrase, the private key will be
- exported in the clear!
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if randfunc is None:
- randfunc = Random.get_random_bytes
- if format == 'OpenSSH':
- e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)]
- if bord(e_bytes[0]) & 0x80:
- e_bytes = b'\x00' + e_bytes
- if bord(n_bytes[0]) & 0x80:
- n_bytes = b'\x00' + n_bytes
- keyparts = [b'ssh-rsa', e_bytes, n_bytes]
- keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts])
- return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1]
- # DER format is always used, even in case of PEM, which simply
- # encodes it into BASE64.
- if self.has_private():
- binary_key = DerSequence([0,
- self.n,
- self.e,
- self.d,
- self.p,
- self.q,
- self.d % (self.p-1),
- self.d % (self.q-1),
- Integer(self.q).inverse(self.p)
- ]).encode()
- if pkcs == 1:
- key_type = 'RSA PRIVATE KEY'
- if format == 'DER' and passphrase:
- raise ValueError("PKCS#1 private key cannot be encrypted")
- else: # PKCS#8
- from tls.Crypto.IO import PKCS8
- if format == 'PEM' and protection is None:
- key_type = 'PRIVATE KEY'
- binary_key = PKCS8.wrap(binary_key, oid, None)
- else:
- key_type = 'ENCRYPTED PRIVATE KEY'
- if not protection:
- protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
- binary_key = PKCS8.wrap(binary_key, oid,
- passphrase, protection)
- passphrase = None
- else:
- key_type = "PUBLIC KEY"
- binary_key = _create_subject_public_key_info(oid,
- DerSequence([self.n,
- self.e])
- )
- if format == 'DER':
- return binary_key
- if format == 'PEM':
- from tls.Crypto.IO import PEM
- pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc)
- return tobytes(pem_str)
- raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
- # Backward compatibility
- exportKey = export_key
- # Methods defined in PyCrypto that we don't support anymore
- def sign(self, M, K):
- raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
- def verify(self, M, signature):
- raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
- def encrypt(self, plaintext, K):
- raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
- def decrypt(self, ciphertext):
- raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
- def blind(self, M, B):
- raise NotImplementedError
- def unblind(self, M, B):
- raise NotImplementedError
- def size(self):
- raise NotImplementedError
- def generate(bits, randfunc=None, e=65537):
- """Create a new RSA key pair.
- The algorithm closely follows NIST `FIPS 186-4`_ in its
- sections B.3.1 and B.3.3. The modulus is the product of
- two non-strong probable primes.
- Each prime passes a suitable number of Miller-Rabin tests
- with random bases and a single Lucas test.
- Args:
- bits (integer):
- Key length, or size (in bits) of the RSA modulus.
- It must be at least 1024, but **2048 is recommended.**
- The FIPS standard only defines 1024, 2048 and 3072.
- randfunc (callable):
- Function that returns random bytes.
- The default is :func:`Crypto.Random.get_random_bytes`.
- e (integer):
- Public RSA exponent. It must be an odd positive integer.
- It is typically a small number with very few ones in its
- binary representation.
- The FIPS standard requires the public exponent to be
- at least 65537 (the default).
- Returns: an RSA key object (:class:`RsaKey`, with private key).
- .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
- """
- if bits < 1024:
- raise ValueError("RSA modulus length must be >= 1024")
- if e % 2 == 0 or e < 3:
- raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
- if randfunc is None:
- randfunc = Random.get_random_bytes
- d = n = Integer(1)
- e = Integer(e)
- while n.size_in_bits() != bits and d < (1 << (bits // 2)):
- # Generate the prime factors of n: p and q.
- # By construciton, their product is always
- # 2^{bits-1} < p*q < 2^bits.
- size_q = bits // 2
- size_p = bits - size_q
- min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt()
- if size_q != size_p:
- min_p = (Integer(1) << (2 * size_p - 1)).sqrt()
- def filter_p(candidate):
- return candidate > min_p and (candidate - 1).gcd(e) == 1
- p = generate_probable_prime(exact_bits=size_p,
- randfunc=randfunc,
- prime_filter=filter_p)
- min_distance = Integer(1) << (bits // 2 - 100)
- def filter_q(candidate):
- return (candidate > min_q and
- (candidate - 1).gcd(e) == 1 and
- abs(candidate - p) > min_distance)
- q = generate_probable_prime(exact_bits=size_q,
- randfunc=randfunc,
- prime_filter=filter_q)
- n = p * q
- lcm = (p - 1).lcm(q - 1)
- d = e.inverse(lcm)
- if p > q:
- p, q = q, p
- u = p.inverse(q)
- return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
- def construct(rsa_components, consistency_check=True):
- r"""Construct an RSA key from a tuple of valid RSA components.
- The modulus **n** must be the product of two primes.
- The public exponent **e** must be odd and larger than 1.
- In case of a private key, the following equations must apply:
- .. math::
- \begin{align}
- p*q &= n \\
- e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\
- p*u &\equiv 1 ( \text{mod } q)
- \end{align}
- Args:
- rsa_components (tuple):
- A tuple of integers, with at least 2 and no
- more than 6 items. The items come in the following order:
- 1. RSA modulus *n*.
- 2. Public exponent *e*.
- 3. Private exponent *d*.
- Only required if the key is private.
- 4. First factor of *n* (*p*).
- Optional, but the other factor *q* must also be present.
- 5. Second factor of *n* (*q*). Optional.
- 6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional.
- consistency_check (boolean):
- If ``True``, the library will verify that the provided components
- fulfil the main RSA properties.
- Raises:
- ValueError: when the key being imported fails the most basic RSA validity checks.
- Returns: An RSA key object (:class:`RsaKey`).
- """
- class InputComps(object):
- pass
- input_comps = InputComps()
- for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components):
- setattr(input_comps, comp, Integer(value))
- n = input_comps.n
- e = input_comps.e
- if not hasattr(input_comps, 'd'):
- key = RsaKey(n=n, e=e)
- else:
- d = input_comps.d
- if hasattr(input_comps, 'q'):
- p = input_comps.p
- q = input_comps.q
- else:
- # Compute factors p and q from the private exponent d.
- # We assume that n has no more than two factors.
- # See 8.2.2(i) in Handbook of Applied Cryptography.
- ktot = d * e - 1
- # The quantity d*e-1 is a multiple of phi(n), even,
- # and can be represented as t*2^s.
- t = ktot
- while t % 2 == 0:
- t //= 2
- # Cycle through all multiplicative inverses in Zn.
- # The algorithm is non-deterministic, but there is a 50% chance
- # any candidate a leads to successful factoring.
- # See "Digitalized Signatures and Public Key Functions as Intractable
- # as Factorization", M. Rabin, 1979
- spotted = False
- a = Integer(2)
- while not spotted and a < 100:
- k = Integer(t)
- # Cycle through all values a^{t*2^i}=a^k
- while k < ktot:
- cand = pow(a, k, n)
- # Check if a^k is a non-trivial root of unity (mod n)
- if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
- # We have found a number such that (cand-1)(cand+1)=0 (mod n).
- # Either of the terms divides n.
- p = Integer(n).gcd(cand + 1)
- spotted = True
- break
- k *= 2
- # This value was not any good... let's try another!
- a += 2
- if not spotted:
- raise ValueError("Unable to compute factors p and q from exponent d.")
- # Found !
- assert ((n % p) == 0)
- q = n // p
- if hasattr(input_comps, 'u'):
- u = input_comps.u
- else:
- u = p.inverse(q)
- # Build key object
- key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
- # Verify consistency of the key
- if consistency_check:
- # Modulus and public exponent must be coprime
- if e <= 1 or e >= n:
- raise ValueError("Invalid RSA public exponent")
- if Integer(n).gcd(e) != 1:
- raise ValueError("RSA public exponent is not coprime to modulus")
- # For RSA, modulus must be odd
- if not n & 1:
- raise ValueError("RSA modulus is not odd")
- if key.has_private():
- # Modulus and private exponent must be coprime
- if d <= 1 or d >= n:
- raise ValueError("Invalid RSA private exponent")
- if Integer(n).gcd(d) != 1:
- raise ValueError("RSA private exponent is not coprime to modulus")
- # Modulus must be product of 2 primes
- if p * q != n:
- raise ValueError("RSA factors do not match modulus")
- if test_probable_prime(p) == COMPOSITE:
- raise ValueError("RSA factor p is composite")
- if test_probable_prime(q) == COMPOSITE:
- raise ValueError("RSA factor q is composite")
- # See Carmichael theorem
- phi = (p - 1) * (q - 1)
- lcm = phi // (p - 1).gcd(q - 1)
- if (e * d % int(lcm)) != 1:
- raise ValueError("Invalid RSA condition")
- if hasattr(key, 'u'):
- # CRT coefficient
- if u <= 1 or u >= q:
- raise ValueError("Invalid RSA component u")
- if (p * u % q) != 1:
- raise ValueError("Invalid RSA component u with p")
- return key
- def _import_pkcs1_private(encoded, *kwargs):
- # RSAPrivateKey ::= SEQUENCE {
- # version Version,
- # modulus INTEGER, -- n
- # publicExponent INTEGER, -- e
- # privateExponent INTEGER, -- d
- # prime1 INTEGER, -- p
- # prime2 INTEGER, -- q
- # exponent1 INTEGER, -- d mod (p-1)
- # exponent2 INTEGER, -- d mod (q-1)
- # coefficient INTEGER -- (inverse of q) mod p
- # }
- #
- # Version ::= INTEGER
- der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True)
- if der[0] != 0:
- raise ValueError("No PKCS#1 encoding of an RSA private key")
- return construct(der[1:6] + [Integer(der[4]).inverse(der[5])])
- def _import_pkcs1_public(encoded, *kwargs):
- # RSAPublicKey ::= SEQUENCE {
- # modulus INTEGER, -- n
- # publicExponent INTEGER -- e
- # }
- der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True)
- return construct(der)
- def _import_subjectPublicKeyInfo(encoded, *kwargs):
- algoid, encoded_key, params = _expand_subject_public_key_info(encoded)
- if algoid != oid or params is not None:
- raise ValueError("No RSA subjectPublicKeyInfo")
- return _import_pkcs1_public(encoded_key)
- def _import_x509_cert(encoded, *kwargs):
- sp_info = _extract_subject_public_key_info(encoded)
- return _import_subjectPublicKeyInfo(sp_info)
- def _import_pkcs8(encoded, passphrase):
- from tls.Crypto.IO import PKCS8
- k = PKCS8.unwrap(encoded, passphrase)
- if k[0] != oid:
- raise ValueError("No PKCS#8 encoded RSA key")
- return _import_keyDER(k[1], passphrase)
- def _import_keyDER(extern_key, passphrase):
- """Import an RSA key (public or private half), encoded in DER form."""
- decodings = (_import_pkcs1_private,
- _import_pkcs1_public,
- _import_subjectPublicKeyInfo,
- _import_x509_cert,
- _import_pkcs8)
- for decoding in decodings:
- try:
- return decoding(extern_key, passphrase)
- except ValueError:
- pass
- raise ValueError("RSA key format is not supported")
- def _import_openssh_private_rsa(data, password):
- from ._openssh import (import_openssh_private_generic,
- read_bytes, read_string, check_padding)
- ssh_name, decrypted = import_openssh_private_generic(data, password)
- if ssh_name != "ssh-rsa":
- raise ValueError("This SSH key is not RSA")
- n, decrypted = read_bytes(decrypted)
- e, decrypted = read_bytes(decrypted)
- d, decrypted = read_bytes(decrypted)
- iqmp, decrypted = read_bytes(decrypted)
- p, decrypted = read_bytes(decrypted)
- q, decrypted = read_bytes(decrypted)
- _, padded = read_string(decrypted) # Comment
- check_padding(padded)
- build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)]
- return construct(build)
- def import_key(extern_key, passphrase=None):
- """Import an RSA key (public or private).
- Args:
- extern_key (string or byte string):
- The RSA key to import.
- The following formats are supported for an RSA **public key**:
- - X.509 certificate (binary or PEM format)
- - X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM
- encoding)
- - `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding)
- - An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII)
- The following formats are supported for an RSA **private key**:
- - PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding)
- - `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
- DER SEQUENCE (binary or PEM encoding)
- - OpenSSH (text format, introduced in `OpenSSH 6.5`_)
- For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
- passphrase (string or byte string):
- For private keys only, the pass phrase that encrypts the key.
- Returns: An RSA key object (:class:`RsaKey`).
- Raises:
- ValueError/IndexError/TypeError:
- When the given key cannot be parsed (possibly because the pass
- phrase is wrong).
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- .. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
- """
- from tls.Crypto.IO import PEM
- extern_key = tobytes(extern_key)
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
- text_encoded = tostr(extern_key)
- openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
- result = _import_openssh_private_rsa(openssh_encoded, passphrase)
- return result
- if extern_key.startswith(b'-----'):
- # This is probably a PEM encoded key.
- (der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
- if enc_flag:
- passphrase = None
- return _import_keyDER(der, passphrase)
- if extern_key.startswith(b'ssh-rsa '):
- # This is probably an OpenSSH key
- keystring = binascii.a2b_base64(extern_key.split(b' ')[1])
- keyparts = []
- while len(keystring) > 4:
- length = struct.unpack(">I", keystring[:4])[0]
- keyparts.append(keystring[4:4 + length])
- keystring = keystring[4 + length:]
- e = Integer.from_bytes(keyparts[1])
- n = Integer.from_bytes(keyparts[2])
- return construct([n, e])
- if len(extern_key) > 0 and bord(extern_key[0]) == 0x30:
- # This is probably a DER encoded key
- return _import_keyDER(extern_key, passphrase)
- raise ValueError("RSA key format is not supported")
- # Backward compatibility
- importKey = import_key
- #: `Object ID`_ for the RSA encryption algorithm. This OID often indicates
- #: a generic RSA key, even when such key will be actually used for digital
- #: signatures.
- #:
- #: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
- oid = "1.2.840.113549.1.1.1"
|