123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- import json
- import matplotlib.pyplot as plt
- #from pprint import pprint
- import csv
- from collections import Counter
- from sklearn.metrics.pairwise import cosine_similarity
- from mlxtend.frequent_patterns import apriori
- from mlxtend.preprocessing import TransactionEncoder
- import pandas as pd
- from scipy import sparse
- import numpy as np
- import time
- """
- ######################DATASET INFORMATION##########################################
- The data was collected from the music streaming service Deezer (November 2017).
- These datasets represent friendship networks of users from 3 European countries.
- Nodes represent the users and edges are the mutual friendships. We reindexed the
- nodes in order to achieve a certain level of anonimity. The csv files contain the
- edges -- nodes are indexed from 0. The json files contain the genre preferences of
- users -- each key is a user id, the genres loved are given as lists. Genre notations
- are consistent across users.In each dataset users could like 84 distinct genres.
- Liked genre lists were compiled based on the liked song lists. The countries included
- are Romania, Croatia and Hungary. For each dataset we listed the number of nodes an edges.
- """
- with open('RO_genres.json') as data_file:
- data = json.load(data_file)
- '#print(data.keys())'
- users = [] # Users in the network who uses the service
- items = [] # Items liked by users in the network
- recommendations = [] # Recommendations generated to the users after mining frequent itemsets
- for key in data.keys(): # Retreiving the ID of each user
- users.append(key)
- for val in data.values(): # Retrieving the ITEMS liked by each user in the network
- items.append(val)
- '#print(users)'
- '#Users in the network, for example:'
- #['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18',...,'41772']
- '#print(items)'
- '#Items liked by all te users in the network, for example:'
- #['Dance', 'Soul & Funk', 'Pop', 'Musicals', 'Contemporary R&B', 'Indie Pop', 'Alternative'],
- res = items
- my_df = pd.DataFrame(res)
- my_df.to_csv('out.csv', index=False, header=False)
- '#print(my_df.head())'
- '# Transposing the items and users into Binary matrix'
- te = TransactionEncoder()
- te_ary = te.fit(items).transform(items)
- df = pd.DataFrame(te_ary, columns=te.columns_)
- '#print(df.head())'
- '# prints the Binary matrix elements, for example:'
- # Acoustic Blues African Music ... Vocal jazz West Coast
- # 0 False False ... False False
- # 1 False False ... False False
- # 2 False False ... False False
- # 3 False False ... False False
- # 4 False False ... False False
- '#print(te.columns_)'
- # Resulting binary matrix to csv file
- res = df
- my_df = pd.DataFrame(res)
- my_df.to_csv('result.csv', index=True, header=True)
- data = pd.read_csv('result.csv')
- data.rename(columns={'Unnamed: 0': 'user'}, inplace=True)
- '#print(data.head())'
- '# prints the Binary matrix elements in result.csv, for example:'
- # user Acoustic Blues ... Vocal jazz West Coast
- # 0 0 False ... False False
- # 1 1 False ... False False
- # 2 2 False ... False False
- # 3 3 False ... False False
- # 4 4 False ... False False
- data_items = data.drop('user', 1)
- print('Dimension of loaded data is:', np.ndim(data_items))
- interest_group_centroids = [] # cluster centriods on which the interest groups are formed
- interest_groups = [] # Most similar items for each centroid in the interest group
- items_len = len(data_items.columns) # lengh of the items in the dataset
- length = [] # stores the index of the centroids
- print(items_len)
- print('\n\n#########################################CENTROIDS#####################################################\n\n')
- p = (items_len-1) // 6
- r = p
- length.append(p)
- for index in range(0, 3):
- items_len = int(round(r + p))
- r = items_len
- length.append(items_len)
- '#print(length)'
- '#Index of the centroid elements, for example:'
- #[16, 32, 48, 64, 80]
- '# Calculating the centroids based on the length of the items in the DATASET: result.csv'
- for index in length: # for each centroid in the length
- centroids = data_items.columns.values[index]
- interest_group_centroids.append(centroids)
- #print('The Centroids are = ', interest_group_centroids, '\n\n')
- #For example: The Centroids are = ['Comedy', 'Electro Hip Hop', 'Jazz Hip Hop', 'Rap/Hip Hop', 'Tropical']
- print('\n\n#########################################ITEM-ITEM_SIMILARITY##########################################\n\n')
- start_time = time.time()
- '# As a first step we normalize the user vectors to unit vectors.'
- magnitude = np.sqrt(np.square(data_items).sum(axis=1))
- data_items = data_items.divide(magnitude, axis='index')
- '#print(data_items.head(5))'
- def calculate_similarity(data_items):
- data_sparse = sparse.csr_matrix(data_items)
- similarities = cosine_similarity(data_sparse.transpose())
- '#print(similarities)'
- sim = pd.DataFrame(data=similarities, index=data_items.columns, columns=data_items.columns)
- return sim
- '# Build the similarity matrix'
- data_matrix = calculate_similarity(data_items)
- '#print(data_matrix.head())'
- #''prints the item-item similarity matrix for all items in DATASET, for example:'
- # Acoustic Blues ... West Coast
- # Acoustic Blues 1.000000 ... 0.000000
- # African Music 0.044191 ... 0.005636
- # Alternative 0.008042 ... 0.028171
- # Alternative Country 0.037340 ... 0.011230
- # Asian Music 0.000000 ... 0.004623
- print("--- %s seconds ---" % (time.time() - start_time))
- print('\n\n#########################################INTEREST GROUPS###############################################\n\n')
- for i in interest_group_centroids:
- Interest_group = data_matrix.loc[i].nlargest(p).index.values
- print('Interest group', interest_group_centroids.index(i), ' = ', Interest_group, '\n')
- interest_groups.append(Interest_group)
- '#print(interest_groups)'
- print(set(interest_groups[1]).intersection(interest_groups[3]))
- print('\n\n#######################FREQUENT-ITEMSETS_APRIORI#######################################################\n\n')
- start_time = time.time()
- d = apriori(df, min_support=0.2, use_colnames=True, max_len=5)
- print((d['itemsets']))
- print("--- %s seconds ---" % (time.time() - start_time))
- print('#############################################USERS & THEIR LIKES###########################################\n\n')
- user = [2222] # The id of the user for whom we want to generate recommendations
- user_index = data[data.user == user].index.tolist()[0] # Get the frame index
- #print('user index is: ', user_index)'
- known_user_likes = data_items.ix[user_index]
- known_user_likes = known_user_likes[known_user_likes > 0].index.values
- print('user', user_index, 'likes', known_user_likes, '\n')
- print('#############################################USERS ASSOCIATION TO INTEREST GROUPS##########################\n\n')
- # for i in interest_groups:
- # a_vals = Counter(i)
- # b_vals = Counter(known_user_likes)
- #
- # # convert to word-vectors, for Example:
- # # [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- # # [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- # # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- # # [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- #
- # words = list(a_vals.keys() | b_vals.keys())
- # a_vect = [a_vals.get(word, 0) for word in words]
- # b_vect = [b_vals.get(word, 0) for word in words]
- # # find cosine
- # len_a = sum(av * av for av in a_vect) ** 0.5
- # len_b = sum(bv * bv for bv in b_vect) ** 0.5
- # dot = sum(av * bv for av, bv in zip(a_vect, b_vect))
- # cosine = dot / (len_a * len_b)
- #
- # if cosine == 0:
- # pass
- # else:
- # #print('User:', user_index, 'is associated to the Interest group:', i, 'with similarity:', cosine)
- # print('')
- Selected_users_association_IG = [user]
- for i in interest_groups:
- interest_groups_set = set(i)
- user_likes_set = set(known_user_likes)
- sim_num = user_likes_set.intersection(interest_groups_set)
- sim_den = user_likes_set.union(interest_groups_set)
- sim = len(sim_num)/len(sim_den)
- if sim > 0:
- g = 'User:', user_index, 'is associated to the Interest group:', i, 'with similarity:', sim
- ass_interest_groups = i
- Selected_users_association_IG.append(ass_interest_groups.tolist())
- print(Selected_users_association_IG[1])
- #user_likes_set.intersection(interest_groups_set)
- print('\n\n#########################################CLIENT_SIDE_RECOMMENDATIONS###################################\n\n')
- left = []
- right = []
- R = []
- for i in range(0, len(d['itemsets'])):
- f_s = d['itemsets'][i]
- #print('Recommendation', i, 'is: ', f_s
- LHS = f_s
- RHS = f_s
- l, *_ = LHS
- *_, r = RHS
- #print(l)
- left.append(l)
- right.append(r)
- #for index in range(1, len(Selected_users_association_IG)):
- #if l in set(Selected_users_association_IG[index]):
- #print(l,'exist')# LHS in user and if LHS present recommend
- if l in set(known_user_likes):
- print('user', user_index, 'gets recommendation:', r)
- R.append(r)
- precision = len(set(known_user_likes).intersection(set(R))) / len(set(R))
- Recall = len(set(known_user_likes).intersection(set(R))) / len(known_user_likes)
- #print('Items to be checked in users list', l, '\n')
- #print('If item', l, 'is present', 'recommend: ', r, '\n')
|