12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709 |
- from numpy.testing import (assert_allclose, assert_almost_equal,
- assert_array_equal, assert_array_almost_equal_nulp)
- import numpy as np
- import pytest
- import matplotlib.mlab as mlab
- from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning
- def _stride_repeat(*args, **kwargs):
- with pytest.warns(MatplotlibDeprecationWarning):
- return mlab.stride_repeat(*args, **kwargs)
- class TestStride:
- def get_base(self, x):
- y = x
- while y.base is not None:
- y = y.base
- return y
- def calc_window_target(self, x, NFFT, noverlap=0, axis=0):
- """
- This is an adaptation of the original window extraction algorithm.
- This is here to test to make sure the new implementation has the same
- result.
- """
- step = NFFT - noverlap
- ind = np.arange(0, len(x) - NFFT + 1, step)
- n = len(ind)
- result = np.zeros((NFFT, n))
- # do the ffts of the slices
- for i in range(n):
- result[:, i] = x[ind[i]:ind[i]+NFFT]
- if axis == 1:
- result = result.T
- return result
- @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D'])
- def test_stride_windows_invalid_input_shape(self, shape):
- x = np.arange(np.prod(shape)).reshape(shape)
- with pytest.raises(ValueError):
- mlab.stride_windows(x, 5)
- @pytest.mark.parametrize('n, noverlap',
- [(0, None), (11, None), (2, 2), (2, 3)],
- ids=['n less than 1', 'n greater than input',
- 'noverlap greater than n',
- 'noverlap equal to n'])
- def test_stride_windows_invalid_params(self, n, noverlap):
- x = np.arange(10)
- with pytest.raises(ValueError):
- mlab.stride_windows(x, n, noverlap)
- @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D'])
- def test_stride_repeat_invalid_input_shape(self, shape):
- x = np.arange(np.prod(shape)).reshape(shape)
- with pytest.raises(ValueError):
- _stride_repeat(x, 5)
- @pytest.mark.parametrize('axis', [-1, 2],
- ids=['axis less than 0',
- 'axis greater than input shape'])
- def test_stride_repeat_invalid_axis(self, axis):
- x = np.array(0)
- with pytest.raises(ValueError):
- _stride_repeat(x, 5, axis=axis)
- def test_stride_repeat_n_lt_1_ValueError(self):
- x = np.arange(10)
- with pytest.raises(ValueError):
- _stride_repeat(x, 0)
- @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
- @pytest.mark.parametrize('n', [1, 5], ids=['n1', 'n5'])
- def test_stride_repeat(self, n, axis):
- x = np.arange(10)
- y = _stride_repeat(x, n, axis=axis)
- expected_shape = [10, 10]
- expected_shape[axis] = n
- yr = np.repeat(np.expand_dims(x, axis), n, axis=axis)
- assert yr.shape == y.shape
- assert_array_equal(yr, y)
- assert tuple(expected_shape) == y.shape
- assert self.get_base(y) is x
- @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
- @pytest.mark.parametrize('n, noverlap',
- [(1, 0), (5, 0), (15, 2), (13, -3)],
- ids=['n1-noverlap0', 'n5-noverlap0',
- 'n15-noverlap2', 'n13-noverlapn3'])
- def test_stride_windows(self, n, noverlap, axis):
- x = np.arange(100)
- y = mlab.stride_windows(x, n, noverlap=noverlap, axis=axis)
- expected_shape = [0, 0]
- expected_shape[axis] = n
- expected_shape[1 - axis] = 100 // (n - noverlap)
- yt = self.calc_window_target(x, n, noverlap=noverlap, axis=axis)
- assert yt.shape == y.shape
- assert_array_equal(yt, y)
- assert tuple(expected_shape) == y.shape
- assert self.get_base(y) is x
- @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
- def test_stride_windows_n32_noverlap0_unflatten(self, axis):
- n = 32
- x = np.arange(n)[np.newaxis]
- x1 = np.tile(x, (21, 1))
- x2 = x1.flatten()
- y = mlab.stride_windows(x2, n, axis=axis)
- if axis == 0:
- x1 = x1.T
- assert y.shape == x1.shape
- assert_array_equal(y, x1)
- def test_stride_ensure_integer_type(self):
- N = 100
- x = np.full(N + 20, np.nan)
- y = x[10:-10]
- y[:] = 0.3
- # previous to #3845 lead to corrupt access
- y_strided = mlab.stride_windows(y, n=33, noverlap=0.6)
- assert_array_equal(y_strided, 0.3)
- # previous to #3845 lead to corrupt access
- y_strided = mlab.stride_windows(y, n=33.3, noverlap=0)
- assert_array_equal(y_strided, 0.3)
- # even previous to #3845 could not find any problematic
- # configuration however, let's be sure it's not accidentally
- # introduced
- y_strided = _stride_repeat(y, n=33.815)
- assert_array_equal(y_strided, 0.3)
- def _apply_window(*args, **kwargs):
- with pytest.warns(MatplotlibDeprecationWarning):
- return mlab.apply_window(*args, **kwargs)
- class TestWindow:
- def setup(self):
- np.random.seed(0)
- n = 1000
- self.sig_rand = np.random.standard_normal(n) + 100.
- self.sig_ones = np.ones(n)
- def check_window_apply_repeat(self, x, window, NFFT, noverlap):
- """
- This is an adaptation of the original window application algorithm.
- This is here to test to make sure the new implementation has the same
- result.
- """
- step = NFFT - noverlap
- ind = np.arange(0, len(x) - NFFT + 1, step)
- n = len(ind)
- result = np.zeros((NFFT, n))
- if np.iterable(window):
- windowVals = window
- else:
- windowVals = window(np.ones(NFFT, x.dtype))
- # do the ffts of the slices
- for i in range(n):
- result[:, i] = windowVals * x[ind[i]:ind[i]+NFFT]
- return result
- def test_window_none_rand(self):
- res = mlab.window_none(self.sig_ones)
- assert_array_equal(res, self.sig_ones)
- def test_window_none_ones(self):
- res = mlab.window_none(self.sig_rand)
- assert_array_equal(res, self.sig_rand)
- def test_window_hanning_rand(self):
- targ = np.hanning(len(self.sig_rand)) * self.sig_rand
- res = mlab.window_hanning(self.sig_rand)
- assert_allclose(targ, res, atol=1e-06)
- def test_window_hanning_ones(self):
- targ = np.hanning(len(self.sig_ones))
- res = mlab.window_hanning(self.sig_ones)
- assert_allclose(targ, res, atol=1e-06)
- def test_apply_window_1D_axis1_ValueError(self):
- x = self.sig_rand
- window = mlab.window_hanning
- with pytest.raises(ValueError):
- _apply_window(x, window, axis=1, return_window=False)
- def test_apply_window_1D_els_wrongsize_ValueError(self):
- x = self.sig_rand
- window = mlab.window_hanning(np.ones(x.shape[0]-1))
- with pytest.raises(ValueError):
- _apply_window(x, window)
- def test_apply_window_0D_ValueError(self):
- x = np.array(0)
- window = mlab.window_hanning
- with pytest.raises(ValueError):
- _apply_window(x, window, axis=1, return_window=False)
- def test_apply_window_3D_ValueError(self):
- x = self.sig_rand[np.newaxis][np.newaxis]
- window = mlab.window_hanning
- with pytest.raises(ValueError):
- _apply_window(x, window, axis=1, return_window=False)
- def test_apply_window_hanning_1D(self):
- x = self.sig_rand
- window = mlab.window_hanning
- window1 = mlab.window_hanning(np.ones(x.shape[0]))
- y, window2 = _apply_window(x, window, return_window=True)
- yt = window(x)
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- assert_array_equal(window1, window2)
- def test_apply_window_hanning_1D_axis0(self):
- x = self.sig_rand
- window = mlab.window_hanning
- y = _apply_window(x, window, axis=0, return_window=False)
- yt = window(x)
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_els_1D_axis0(self):
- x = self.sig_rand
- window = mlab.window_hanning(np.ones(x.shape[0]))
- window1 = mlab.window_hanning
- y = _apply_window(x, window, axis=0, return_window=False)
- yt = window1(x)
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_2D_axis0(self):
- x = np.random.standard_normal([1000, 10]) + 100.
- window = mlab.window_hanning
- y = _apply_window(x, window, axis=0, return_window=False)
- yt = np.zeros_like(x)
- for i in range(x.shape[1]):
- yt[:, i] = window(x[:, i])
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_els1_2D_axis0(self):
- x = np.random.standard_normal([1000, 10]) + 100.
- window = mlab.window_hanning(np.ones(x.shape[0]))
- window1 = mlab.window_hanning
- y = _apply_window(x, window, axis=0, return_window=False)
- yt = np.zeros_like(x)
- for i in range(x.shape[1]):
- yt[:, i] = window1(x[:, i])
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_els2_2D_axis0(self):
- x = np.random.standard_normal([1000, 10]) + 100.
- window = mlab.window_hanning
- window1 = mlab.window_hanning(np.ones(x.shape[0]))
- y, window2 = _apply_window(x, window, axis=0, return_window=True)
- yt = np.zeros_like(x)
- for i in range(x.shape[1]):
- yt[:, i] = window1*x[:, i]
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- assert_array_equal(window1, window2)
- def test_apply_window_hanning_els3_2D_axis0(self):
- x = np.random.standard_normal([1000, 10]) + 100.
- window = mlab.window_hanning
- window1 = mlab.window_hanning(np.ones(x.shape[0]))
- y, window2 = _apply_window(x, window, axis=0, return_window=True)
- yt = _apply_window(x, window1, axis=0, return_window=False)
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- assert_array_equal(window1, window2)
- def test_apply_window_hanning_2D_axis1(self):
- x = np.random.standard_normal([10, 1000]) + 100.
- window = mlab.window_hanning
- y = _apply_window(x, window, axis=1, return_window=False)
- yt = np.zeros_like(x)
- for i in range(x.shape[0]):
- yt[i, :] = window(x[i, :])
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_2D_els1_axis1(self):
- x = np.random.standard_normal([10, 1000]) + 100.
- window = mlab.window_hanning(np.ones(x.shape[1]))
- window1 = mlab.window_hanning
- y = _apply_window(x, window, axis=1, return_window=False)
- yt = np.zeros_like(x)
- for i in range(x.shape[0]):
- yt[i, :] = window1(x[i, :])
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_2D_els2_axis1(self):
- x = np.random.standard_normal([10, 1000]) + 100.
- window = mlab.window_hanning
- window1 = mlab.window_hanning(np.ones(x.shape[1]))
- y, window2 = _apply_window(x, window, axis=1, return_window=True)
- yt = np.zeros_like(x)
- for i in range(x.shape[0]):
- yt[i, :] = window1 * x[i, :]
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- assert_array_equal(window1, window2)
- def test_apply_window_hanning_2D_els3_axis1(self):
- x = np.random.standard_normal([10, 1000]) + 100.
- window = mlab.window_hanning
- window1 = mlab.window_hanning(np.ones(x.shape[1]))
- y = _apply_window(x, window, axis=1, return_window=False)
- yt = _apply_window(x, window1, axis=1, return_window=False)
- assert yt.shape == y.shape
- assert x.shape == y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self):
- x = self.sig_rand
- window = mlab.window_hanning
- yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0)
- y = _apply_window(yi, window, axis=0, return_window=False)
- yt = self.check_window_apply_repeat(x, window, 13, 2)
- assert yt.shape == y.shape
- assert x.shape != y.shape
- assert_allclose(yt, y, atol=1e-06)
- def test_apply_window_hanning_2D_stack_axis1(self):
- ydata = np.arange(32)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
- ycontrol2 = mlab.window_hanning(ydata2)
- ydata = np.vstack([ydata1, ydata2])
- ycontrol = np.vstack([ycontrol1, ycontrol2])
- ydata = np.tile(ydata, (20, 1))
- ycontrol = np.tile(ycontrol, (20, 1))
- result = _apply_window(ydata, mlab.window_hanning, axis=1,
- return_window=False)
- assert_allclose(ycontrol, result, atol=1e-08)
- def test_apply_window_hanning_2D_stack_windows_axis1(self):
- ydata = np.arange(32)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
- ycontrol2 = mlab.window_hanning(ydata2)
- ydata = np.vstack([ydata1, ydata2])
- ycontrol = np.vstack([ycontrol1, ycontrol2])
- ydata = np.tile(ydata, (20, 1))
- ycontrol = np.tile(ycontrol, (20, 1))
- result = _apply_window(ydata, mlab.window_hanning, axis=1,
- return_window=False)
- assert_allclose(ycontrol, result, atol=1e-08)
- def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self):
- n = 32
- ydata = np.arange(n)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
- ycontrol2 = mlab.window_hanning(ydata2)
- ydata = np.vstack([ydata1, ydata2])
- ycontrol = np.vstack([ycontrol1, ycontrol2])
- ydata = np.tile(ydata, (20, 1))
- ycontrol = np.tile(ycontrol, (20, 1))
- ydata = ydata.flatten()
- ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0)
- result = _apply_window(ydata1, mlab.window_hanning, axis=0,
- return_window=False)
- assert_allclose(ycontrol.T, result, atol=1e-08)
- class TestDetrend:
- def setup(self):
- np.random.seed(0)
- n = 1000
- x = np.linspace(0., 100, n)
- self.sig_zeros = np.zeros(n)
- self.sig_off = self.sig_zeros + 100.
- self.sig_slope = np.linspace(-10., 90., n)
- self.sig_slope_mean = x - x.mean()
- sig_rand = np.random.standard_normal(n)
- sig_sin = np.sin(x*2*np.pi/(n/100))
- sig_rand -= sig_rand.mean()
- sig_sin -= sig_sin.mean()
- self.sig_base = sig_rand + sig_sin
- self.atol = 1e-08
- def test_detrend_none_0D_zeros(self):
- input = 0.
- targ = input
- mlab.detrend_none(input)
- assert input == targ
- def test_detrend_none_0D_zeros_axis1(self):
- input = 0.
- targ = input
- mlab.detrend_none(input, axis=1)
- assert input == targ
- def test_detrend_str_none_0D_zeros(self):
- input = 0.
- targ = input
- mlab.detrend(input, key='none')
- assert input == targ
- def test_detrend_detrend_none_0D_zeros(self):
- input = 0.
- targ = input
- mlab.detrend(input, key=mlab.detrend_none)
- assert input == targ
- def test_detrend_none_0D_off(self):
- input = 5.5
- targ = input
- mlab.detrend_none(input)
- assert input == targ
- def test_detrend_none_1D_off(self):
- input = self.sig_off
- targ = input
- res = mlab.detrend_none(input)
- assert_array_equal(res, targ)
- def test_detrend_none_1D_slope(self):
- input = self.sig_slope
- targ = input
- res = mlab.detrend_none(input)
- assert_array_equal(res, targ)
- def test_detrend_none_1D_base(self):
- input = self.sig_base
- targ = input
- res = mlab.detrend_none(input)
- assert_array_equal(res, targ)
- def test_detrend_none_1D_base_slope_off_list(self):
- input = self.sig_base + self.sig_slope + self.sig_off
- targ = input.tolist()
- res = mlab.detrend_none(input.tolist())
- assert res == targ
- def test_detrend_none_2D(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- input = np.vstack(arri)
- targ = input
- res = mlab.detrend_none(input)
- assert_array_equal(res, targ)
- def test_detrend_none_2D_T(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- input = np.vstack(arri)
- targ = input
- res = mlab.detrend_none(input.T)
- assert_array_equal(res.T, targ)
- def test_detrend_mean_0D_zeros(self):
- input = 0.
- targ = 0.
- res = mlab.detrend_mean(input)
- assert_almost_equal(res, targ)
- def test_detrend_str_mean_0D_zeros(self):
- input = 0.
- targ = 0.
- res = mlab.detrend(input, key='mean')
- assert_almost_equal(res, targ)
- def test_detrend_detrend_mean_0D_zeros(self):
- input = 0.
- targ = 0.
- res = mlab.detrend(input, key=mlab.detrend_mean)
- assert_almost_equal(res, targ)
- def test_detrend_mean_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend_mean(input)
- assert_almost_equal(res, targ)
- def test_detrend_str_mean_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend(input, key='mean')
- assert_almost_equal(res, targ)
- def test_detrend_detrend_mean_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend(input, key=mlab.detrend_mean)
- assert_almost_equal(res, targ)
- def test_detrend_mean_1D_zeros(self):
- input = self.sig_zeros
- targ = self.sig_zeros
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_mean_1D_base(self):
- input = self.sig_base
- targ = self.sig_base
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_mean_1D_base_off(self):
- input = self.sig_base + self.sig_off
- targ = self.sig_base
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_mean_1D_base_slope(self):
- input = self.sig_base + self.sig_slope
- targ = self.sig_base + self.sig_slope_mean
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_mean_1D_base_slope_off(self):
- input = self.sig_base + self.sig_slope + self.sig_off
- targ = self.sig_base + self.sig_slope_mean
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_mean_1D_base_slope_off_axis0(self):
- input = self.sig_base + self.sig_slope + self.sig_off
- targ = self.sig_base + self.sig_slope_mean
- res = mlab.detrend_mean(input, axis=0)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_mean_1D_base_slope_off_list(self):
- input = self.sig_base + self.sig_slope + self.sig_off
- targ = self.sig_base + self.sig_slope_mean
- res = mlab.detrend_mean(input.tolist())
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_mean_1D_base_slope_off_list_axis0(self):
- input = self.sig_base + self.sig_slope + self.sig_off
- targ = self.sig_base + self.sig_slope_mean
- res = mlab.detrend_mean(input.tolist(), axis=0)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_mean_2D_default(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend_mean(input)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_mean_2D_none(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend_mean(input, axis=None)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_mean_2D_none_T(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri).T
- targ = np.vstack(arrt)
- res = mlab.detrend_mean(input, axis=None)
- assert_allclose(res.T, targ,
- atol=1e-08)
- def test_detrend_mean_2D_axis0(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri).T
- targ = np.vstack(arrt).T
- res = mlab.detrend_mean(input, axis=0)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_mean_2D_axis1(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend_mean(input, axis=1)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_mean_2D_axism1(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend_mean(input, axis=-1)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_2D_default(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend(input)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_2D_none(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend(input, axis=None)
- assert_allclose(res, targ, atol=1e-08)
- def test_detrend_str_mean_2D_axis0(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri).T
- targ = np.vstack(arrt).T
- res = mlab.detrend(input, key='mean', axis=0)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_str_constant_2D_none_T(self):
- arri = [self.sig_off,
- self.sig_base + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_base]
- input = np.vstack(arri).T
- targ = np.vstack(arrt)
- res = mlab.detrend(input, key='constant', axis=None)
- assert_allclose(res.T, targ,
- atol=1e-08)
- def test_detrend_str_default_2D_axis1(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend(input, key='default', axis=1)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_detrend_mean_2D_axis0(self):
- arri = [self.sig_base,
- self.sig_base + self.sig_off,
- self.sig_base + self.sig_slope,
- self.sig_base + self.sig_off + self.sig_slope]
- arrt = [self.sig_base,
- self.sig_base,
- self.sig_base + self.sig_slope_mean,
- self.sig_base + self.sig_slope_mean]
- input = np.vstack(arri).T
- targ = np.vstack(arrt).T
- res = mlab.detrend(input, key=mlab.detrend_mean, axis=0)
- assert_allclose(res, targ,
- atol=1e-08)
- def test_detrend_bad_key_str_ValueError(self):
- input = self.sig_slope[np.newaxis]
- with pytest.raises(ValueError):
- mlab.detrend(input, key='spam')
- def test_detrend_bad_key_var_ValueError(self):
- input = self.sig_slope[np.newaxis]
- with pytest.raises(ValueError):
- mlab.detrend(input, key=5)
- def test_detrend_mean_0D_d0_ValueError(self):
- input = 5.5
- with pytest.raises(ValueError):
- mlab.detrend_mean(input, axis=0)
- def test_detrend_0D_d0_ValueError(self):
- input = 5.5
- with pytest.raises(ValueError):
- mlab.detrend(input, axis=0)
- def test_detrend_mean_1D_d1_ValueError(self):
- input = self.sig_slope
- with pytest.raises(ValueError):
- mlab.detrend_mean(input, axis=1)
- def test_detrend_1D_d1_ValueError(self):
- input = self.sig_slope
- with pytest.raises(ValueError):
- mlab.detrend(input, axis=1)
- def test_detrend_mean_2D_d2_ValueError(self):
- input = self.sig_slope[np.newaxis]
- with pytest.raises(ValueError):
- mlab.detrend_mean(input, axis=2)
- def test_detrend_2D_d2_ValueError(self):
- input = self.sig_slope[np.newaxis]
- with pytest.raises(ValueError):
- mlab.detrend(input, axis=2)
- def test_detrend_linear_0D_zeros(self):
- input = 0.
- targ = 0.
- res = mlab.detrend_linear(input)
- assert_almost_equal(res, targ)
- def test_detrend_linear_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend_linear(input)
- assert_almost_equal(res, targ)
- def test_detrend_str_linear_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend(input, key='linear')
- assert_almost_equal(res, targ)
- def test_detrend_detrend_linear_0D_off(self):
- input = 5.5
- targ = 0.
- res = mlab.detrend(input, key=mlab.detrend_linear)
- assert_almost_equal(res, targ)
- def test_detrend_linear_1d_off(self):
- input = self.sig_off
- targ = self.sig_zeros
- res = mlab.detrend_linear(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_linear_1d_slope(self):
- input = self.sig_slope
- targ = self.sig_zeros
- res = mlab.detrend_linear(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_linear_1d_slope_off(self):
- input = self.sig_slope + self.sig_off
- targ = self.sig_zeros
- res = mlab.detrend_linear(input)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_str_linear_1d_slope_off(self):
- input = self.sig_slope + self.sig_off
- targ = self.sig_zeros
- res = mlab.detrend(input, key='linear')
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_detrend_linear_1d_slope_off(self):
- input = self.sig_slope + self.sig_off
- targ = self.sig_zeros
- res = mlab.detrend(input, key=mlab.detrend_linear)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_linear_1d_slope_off_list(self):
- input = self.sig_slope + self.sig_off
- targ = self.sig_zeros
- res = mlab.detrend_linear(input.tolist())
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_linear_2D_ValueError(self):
- input = self.sig_slope[np.newaxis]
- with pytest.raises(ValueError):
- mlab.detrend_linear(input)
- def test_detrend_str_linear_2d_slope_off_axis0(self):
- arri = [self.sig_off,
- self.sig_slope,
- self.sig_slope + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_zeros,
- self.sig_zeros]
- input = np.vstack(arri).T
- targ = np.vstack(arrt).T
- res = mlab.detrend(input, key='linear', axis=0)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_detrend_linear_1d_slope_off_axis1(self):
- arri = [self.sig_off,
- self.sig_slope,
- self.sig_slope + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_zeros,
- self.sig_zeros]
- input = np.vstack(arri).T
- targ = np.vstack(arrt).T
- res = mlab.detrend(input, key=mlab.detrend_linear, axis=0)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_str_linear_2d_slope_off_axis0_notranspose(self):
- arri = [self.sig_off,
- self.sig_slope,
- self.sig_slope + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_zeros,
- self.sig_zeros]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend(input, key='linear', axis=1)
- assert_allclose(res, targ, atol=self.atol)
- def test_detrend_detrend_linear_1d_slope_off_axis1_notranspose(self):
- arri = [self.sig_off,
- self.sig_slope,
- self.sig_slope + self.sig_off]
- arrt = [self.sig_zeros,
- self.sig_zeros,
- self.sig_zeros]
- input = np.vstack(arri)
- targ = np.vstack(arrt)
- res = mlab.detrend(input, key=mlab.detrend_linear, axis=1)
- assert_allclose(res, targ, atol=self.atol)
- @pytest.mark.parametrize('iscomplex', [False, True],
- ids=['real', 'complex'], scope='class')
- @pytest.mark.parametrize('sides', ['onesided', 'twosided', 'default'],
- scope='class')
- @pytest.mark.parametrize(
- 'fstims,len_x,NFFT_density,nover_density,pad_to_density,pad_to_spectrum',
- [
- ([], None, -1, -1, -1, -1),
- ([4], None, -1, -1, -1, -1),
- ([4, 5, 10], None, -1, -1, -1, -1),
- ([], None, None, -1, -1, None),
- ([], None, -1, -1, None, None),
- ([], None, None, -1, None, None),
- ([], 1024, 512, -1, -1, 128),
- ([], 256, -1, -1, 33, 257),
- ([], 255, 33, -1, -1, None),
- ([], 256, 128, -1, 256, 256),
- ([], None, -1, 32, -1, -1),
- ],
- ids=[
- 'nosig',
- 'Fs4',
- 'FsAll',
- 'nosig_noNFFT',
- 'nosig_nopad_to',
- 'nosig_noNFFT_no_pad_to',
- 'nosig_trim',
- 'nosig_odd',
- 'nosig_oddlen',
- 'nosig_stretch',
- 'nosig_overlap',
- ],
- scope='class')
- class TestSpectral:
- @pytest.fixture(scope='class', autouse=True)
- def stim(self, request, fstims, iscomplex, sides, len_x, NFFT_density,
- nover_density, pad_to_density, pad_to_spectrum):
- Fs = 100.
- x = np.arange(0, 10, 1 / Fs)
- if len_x is not None:
- x = x[:len_x]
- # get the stimulus frequencies, defaulting to None
- fstims = [Fs / fstim for fstim in fstims]
- # get the constants, default to calculated values
- if NFFT_density is None:
- NFFT_density_real = 256
- elif NFFT_density < 0:
- NFFT_density_real = NFFT_density = 100
- else:
- NFFT_density_real = NFFT_density
- if nover_density is None:
- nover_density_real = 0
- elif nover_density < 0:
- nover_density_real = nover_density = NFFT_density_real // 2
- else:
- nover_density_real = nover_density
- if pad_to_density is None:
- pad_to_density_real = NFFT_density_real
- elif pad_to_density < 0:
- pad_to_density = int(2**np.ceil(np.log2(NFFT_density_real)))
- pad_to_density_real = pad_to_density
- else:
- pad_to_density_real = pad_to_density
- if pad_to_spectrum is None:
- pad_to_spectrum_real = len(x)
- elif pad_to_spectrum < 0:
- pad_to_spectrum_real = pad_to_spectrum = len(x)
- else:
- pad_to_spectrum_real = pad_to_spectrum
- if pad_to_spectrum is None:
- NFFT_spectrum_real = NFFT_spectrum = pad_to_spectrum_real
- else:
- NFFT_spectrum_real = NFFT_spectrum = len(x)
- nover_spectrum = 0
- NFFT_specgram = NFFT_density
- nover_specgram = nover_density
- pad_to_specgram = pad_to_density
- NFFT_specgram_real = NFFT_density_real
- nover_specgram_real = nover_density_real
- if sides == 'onesided' or (sides == 'default' and not iscomplex):
- # frequencies for specgram, psd, and csd
- # need to handle even and odd differently
- if pad_to_density_real % 2:
- freqs_density = np.linspace(0, Fs / 2,
- num=pad_to_density_real,
- endpoint=False)[::2]
- else:
- freqs_density = np.linspace(0, Fs / 2,
- num=pad_to_density_real // 2 + 1)
- # frequencies for complex, magnitude, angle, and phase spectrums
- # need to handle even and odd differently
- if pad_to_spectrum_real % 2:
- freqs_spectrum = np.linspace(0, Fs / 2,
- num=pad_to_spectrum_real,
- endpoint=False)[::2]
- else:
- freqs_spectrum = np.linspace(0, Fs / 2,
- num=pad_to_spectrum_real // 2 + 1)
- else:
- # frequencies for specgram, psd, and csd
- # need to handle even and odd differentl
- if pad_to_density_real % 2:
- freqs_density = np.linspace(-Fs / 2, Fs / 2,
- num=2 * pad_to_density_real,
- endpoint=False)[1::2]
- else:
- freqs_density = np.linspace(-Fs / 2, Fs / 2,
- num=pad_to_density_real,
- endpoint=False)
- # frequencies for complex, magnitude, angle, and phase spectrums
- # need to handle even and odd differently
- if pad_to_spectrum_real % 2:
- freqs_spectrum = np.linspace(-Fs / 2, Fs / 2,
- num=2 * pad_to_spectrum_real,
- endpoint=False)[1::2]
- else:
- freqs_spectrum = np.linspace(-Fs / 2, Fs / 2,
- num=pad_to_spectrum_real,
- endpoint=False)
- freqs_specgram = freqs_density
- # time points for specgram
- t_start = NFFT_specgram_real // 2
- t_stop = len(x) - NFFT_specgram_real // 2 + 1
- t_step = NFFT_specgram_real - nover_specgram_real
- t_specgram = x[t_start:t_stop:t_step]
- if NFFT_specgram_real % 2:
- t_specgram += 1 / Fs / 2
- if len(t_specgram) == 0:
- t_specgram = np.array([NFFT_specgram_real / (2 * Fs)])
- t_spectrum = np.array([NFFT_spectrum_real / (2 * Fs)])
- t_density = t_specgram
- y = np.zeros_like(x)
- for i, fstim in enumerate(fstims):
- y += np.sin(fstim * x * np.pi * 2) * 10**i
- if iscomplex:
- y = y.astype('complex')
- # Interestingly, the instance on which this fixture is called is not
- # the same as the one on which a test is run. So we need to modify the
- # class itself when using a class-scoped fixture.
- cls = request.cls
- cls.Fs = Fs
- cls.sides = sides
- cls.fstims = fstims
- cls.NFFT_density = NFFT_density
- cls.nover_density = nover_density
- cls.pad_to_density = pad_to_density
- cls.NFFT_spectrum = NFFT_spectrum
- cls.nover_spectrum = nover_spectrum
- cls.pad_to_spectrum = pad_to_spectrum
- cls.NFFT_specgram = NFFT_specgram
- cls.nover_specgram = nover_specgram
- cls.pad_to_specgram = pad_to_specgram
- cls.t_specgram = t_specgram
- cls.t_density = t_density
- cls.t_spectrum = t_spectrum
- cls.y = y
- cls.freqs_density = freqs_density
- cls.freqs_spectrum = freqs_spectrum
- cls.freqs_specgram = freqs_specgram
- cls.NFFT_density_real = NFFT_density_real
- def check_freqs(self, vals, targfreqs, resfreqs, fstims):
- assert resfreqs.argmin() == 0
- assert resfreqs.argmax() == len(resfreqs)-1
- assert_allclose(resfreqs, targfreqs, atol=1e-06)
- for fstim in fstims:
- i = np.abs(resfreqs - fstim).argmin()
- assert vals[i] > vals[i+2]
- assert vals[i] > vals[i-2]
- def check_maxfreq(self, spec, fsp, fstims):
- # skip the test if there are no frequencies
- if len(fstims) == 0:
- return
- # if twosided, do the test for each side
- if fsp.min() < 0:
- fspa = np.abs(fsp)
- zeroind = fspa.argmin()
- self.check_maxfreq(spec[:zeroind], fspa[:zeroind], fstims)
- self.check_maxfreq(spec[zeroind:], fspa[zeroind:], fstims)
- return
- fstimst = fstims[:]
- spect = spec.copy()
- # go through each peak and make sure it is correctly the maximum peak
- while fstimst:
- maxind = spect.argmax()
- maxfreq = fsp[maxind]
- assert_almost_equal(maxfreq, fstimst[-1])
- del fstimst[-1]
- spect[maxind-5:maxind+5] = 0
- def test_spectral_helper_raises(self):
- # We don't use parametrize here to handle ``y = self.y``.
- for kwargs in [ # Various error conditions:
- {"y": self.y+1, "mode": "complex"}, # Modes requiring ``x is y``.
- {"y": self.y+1, "mode": "magnitude"},
- {"y": self.y+1, "mode": "angle"},
- {"y": self.y+1, "mode": "phase"},
- {"mode": "spam"}, # Bad mode.
- {"y": self.y, "sides": "eggs"}, # Bad sides.
- {"y": self.y, "NFFT": 10, "noverlap": 20}, # noverlap > NFFT.
- {"NFFT": 10, "noverlap": 10}, # noverlap == NFFT.
- {"y": self.y, "NFFT": 10,
- "window": np.ones(9)}, # len(win) != NFFT.
- ]:
- with pytest.raises(ValueError):
- mlab._spectral_helper(x=self.y, **kwargs)
- @pytest.mark.parametrize('mode', ['default', 'psd'])
- def test_single_spectrum_helper_unsupported_modes(self, mode):
- with pytest.raises(ValueError):
- mlab._single_spectrum_helper(x=self.y, mode=mode)
- @pytest.mark.parametrize("mode, case", [
- ("psd", "density"),
- ("magnitude", "specgram"),
- ("magnitude", "spectrum"),
- ])
- def test_spectral_helper_psd(self, mode, case):
- freqs = getattr(self, f"freqs_{case}")
- spec, fsp, t = mlab._spectral_helper(
- x=self.y, y=self.y,
- NFFT=getattr(self, f"NFFT_{case}"),
- Fs=self.Fs,
- noverlap=getattr(self, f"nover_{case}"),
- pad_to=getattr(self, f"pad_to_{case}"),
- sides=self.sides,
- mode=mode)
- assert_allclose(fsp, freqs, atol=1e-06)
- assert_allclose(t, getattr(self, f"t_{case}"), atol=1e-06)
- assert spec.shape[0] == freqs.shape[0]
- assert spec.shape[1] == getattr(self, f"t_{case}").shape[0]
- def test_csd(self):
- freqs = self.freqs_density
- spec, fsp = mlab.csd(x=self.y, y=self.y+1,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides)
- assert_allclose(fsp, freqs, atol=1e-06)
- assert spec.shape == freqs.shape
- def test_csd_padding(self):
- """Test zero padding of csd()."""
- if self.NFFT_density is None: # for derived classes
- return
- sargs = dict(x=self.y, y=self.y+1, Fs=self.Fs, window=mlab.window_none,
- sides=self.sides)
- spec0, _ = mlab.csd(NFFT=self.NFFT_density, **sargs)
- spec1, _ = mlab.csd(NFFT=self.NFFT_density*2, **sargs)
- assert_almost_equal(np.sum(np.conjugate(spec0)*spec0).real,
- np.sum(np.conjugate(spec1/2)*spec1/2).real)
- def test_psd(self):
- freqs = self.freqs_density
- spec, fsp = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides)
- assert spec.shape == freqs.shape
- self.check_freqs(spec, freqs, fsp, self.fstims)
- @pytest.mark.parametrize(
- 'make_data, detrend',
- [(np.zeros, mlab.detrend_mean), (np.zeros, 'mean'),
- (np.arange, mlab.detrend_linear), (np.arange, 'linear')])
- def test_psd_detrend(self, make_data, detrend):
- if self.NFFT_density is None:
- return
- ydata = make_data(self.NFFT_density)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ydata = np.vstack([ydata1, ydata2])
- ydata = np.tile(ydata, (20, 1))
- ydatab = ydata.T.flatten()
- ydata = ydata.flatten()
- ycontrol = np.zeros_like(ydata)
- spec_g, fsp_g = mlab.psd(x=ydata,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- detrend=detrend)
- spec_b, fsp_b = mlab.psd(x=ydatab,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- detrend=detrend)
- spec_c, fsp_c = mlab.psd(x=ycontrol,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides)
- assert_array_equal(fsp_g, fsp_c)
- assert_array_equal(fsp_b, fsp_c)
- assert_allclose(spec_g, spec_c, atol=1e-08)
- # these should not be almost equal
- with pytest.raises(AssertionError):
- assert_allclose(spec_b, spec_c, atol=1e-08)
- def test_psd_window_hanning(self):
- if self.NFFT_density is None:
- return
- ydata = np.arange(self.NFFT_density)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ycontrol1, windowVals = _apply_window(ydata1,
- mlab.window_hanning,
- return_window=True)
- ycontrol2 = mlab.window_hanning(ydata2)
- ydata = np.vstack([ydata1, ydata2])
- ycontrol = np.vstack([ycontrol1, ycontrol2])
- ydata = np.tile(ydata, (20, 1))
- ycontrol = np.tile(ycontrol, (20, 1))
- ydatab = ydata.T.flatten()
- ydataf = ydata.flatten()
- ycontrol = ycontrol.flatten()
- spec_g, fsp_g = mlab.psd(x=ydataf,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- window=mlab.window_hanning)
- spec_b, fsp_b = mlab.psd(x=ydatab,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- window=mlab.window_hanning)
- spec_c, fsp_c = mlab.psd(x=ycontrol,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- window=mlab.window_none)
- spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum()
- assert_array_equal(fsp_g, fsp_c)
- assert_array_equal(fsp_b, fsp_c)
- assert_allclose(spec_g, spec_c, atol=1e-08)
- # these should not be almost equal
- with pytest.raises(AssertionError):
- assert_allclose(spec_b, spec_c, atol=1e-08)
- def test_psd_window_hanning_detrend_linear(self):
- if self.NFFT_density is None:
- return
- ydata = np.arange(self.NFFT_density)
- ycontrol = np.zeros(self.NFFT_density)
- ydata1 = ydata+5
- ydata2 = ydata+3.3
- ycontrol1 = ycontrol
- ycontrol2 = ycontrol
- ycontrol1, windowVals = _apply_window(ycontrol1,
- mlab.window_hanning,
- return_window=True)
- ycontrol2 = mlab.window_hanning(ycontrol2)
- ydata = np.vstack([ydata1, ydata2])
- ycontrol = np.vstack([ycontrol1, ycontrol2])
- ydata = np.tile(ydata, (20, 1))
- ycontrol = np.tile(ycontrol, (20, 1))
- ydatab = ydata.T.flatten()
- ydataf = ydata.flatten()
- ycontrol = ycontrol.flatten()
- spec_g, fsp_g = mlab.psd(x=ydataf,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- detrend=mlab.detrend_linear,
- window=mlab.window_hanning)
- spec_b, fsp_b = mlab.psd(x=ydatab,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- detrend=mlab.detrend_linear,
- window=mlab.window_hanning)
- spec_c, fsp_c = mlab.psd(x=ycontrol,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=0,
- sides=self.sides,
- window=mlab.window_none)
- spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum()
- assert_array_equal(fsp_g, fsp_c)
- assert_array_equal(fsp_b, fsp_c)
- assert_allclose(spec_g, spec_c, atol=1e-08)
- # these should not be almost equal
- with pytest.raises(AssertionError):
- assert_allclose(spec_b, spec_c, atol=1e-08)
- def test_psd_windowarray(self):
- freqs = self.freqs_density
- spec, fsp = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides,
- window=np.ones(self.NFFT_density_real))
- assert_allclose(fsp, freqs, atol=1e-06)
- assert spec.shape == freqs.shape
- def test_psd_windowarray_scale_by_freq(self):
- win = mlab.window_hanning(np.ones(self.NFFT_density_real))
- spec, fsp = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides,
- window=mlab.window_hanning)
- spec_s, fsp_s = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides,
- window=mlab.window_hanning,
- scale_by_freq=True)
- spec_n, fsp_n = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides,
- window=mlab.window_hanning,
- scale_by_freq=False)
- assert_array_equal(fsp, fsp_s)
- assert_array_equal(fsp, fsp_n)
- assert_array_equal(spec, spec_s)
- assert_allclose(spec_s*(win**2).sum(),
- spec_n/self.Fs*win.sum()**2,
- atol=1e-08)
- @pytest.mark.parametrize(
- "kind", ["complex", "magnitude", "angle", "phase"])
- def test_spectrum(self, kind):
- freqs = self.freqs_spectrum
- spec, fsp = getattr(mlab, f"{kind}_spectrum")(
- x=self.y,
- Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum)
- assert_allclose(fsp, freqs, atol=1e-06)
- assert spec.shape == freqs.shape
- if kind == "magnitude":
- self.check_maxfreq(spec, fsp, self.fstims)
- self.check_freqs(spec, freqs, fsp, self.fstims)
- @pytest.mark.parametrize(
- 'kwargs',
- [{}, {'mode': 'default'}, {'mode': 'psd'}, {'mode': 'magnitude'},
- {'mode': 'complex'}, {'mode': 'angle'}, {'mode': 'phase'}])
- def test_specgram(self, kwargs):
- freqs = self.freqs_specgram
- spec, fsp, t = mlab.specgram(x=self.y,
- NFFT=self.NFFT_specgram,
- Fs=self.Fs,
- noverlap=self.nover_specgram,
- pad_to=self.pad_to_specgram,
- sides=self.sides,
- **kwargs)
- if kwargs.get('mode') == 'complex':
- spec = np.abs(spec)
- specm = np.mean(spec, axis=1)
- assert_allclose(fsp, freqs, atol=1e-06)
- assert_allclose(t, self.t_specgram, atol=1e-06)
- assert spec.shape[0] == freqs.shape[0]
- assert spec.shape[1] == self.t_specgram.shape[0]
- if kwargs.get('mode') not in ['complex', 'angle', 'phase']:
- # using a single freq, so all time slices should be about the same
- if np.abs(spec.max()) != 0:
- assert_allclose(
- np.diff(spec, axis=1).max() / np.abs(spec.max()), 0,
- atol=1e-02)
- if kwargs.get('mode') not in ['angle', 'phase']:
- self.check_freqs(specm, freqs, fsp, self.fstims)
- def test_specgram_warn_only1seg(self):
- """Warning should be raised if len(x) <= NFFT."""
- with pytest.warns(UserWarning, match="Only one segment is calculated"):
- mlab.specgram(x=self.y, NFFT=len(self.y), Fs=self.Fs)
- def test_psd_csd_equal(self):
- Pxx, freqsxx = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides)
- Pxy, freqsxy = mlab.csd(x=self.y, y=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides)
- assert_array_almost_equal_nulp(Pxx, Pxy)
- assert_array_equal(freqsxx, freqsxy)
- @pytest.mark.parametrize("mode", ["default", "psd"])
- def test_specgram_auto_default_psd_equal(self, mode):
- """
- Test that mlab.specgram without mode and with mode 'default' and 'psd'
- are all the same.
- """
- speca, freqspeca, ta = mlab.specgram(x=self.y,
- NFFT=self.NFFT_specgram,
- Fs=self.Fs,
- noverlap=self.nover_specgram,
- pad_to=self.pad_to_specgram,
- sides=self.sides)
- specb, freqspecb, tb = mlab.specgram(x=self.y,
- NFFT=self.NFFT_specgram,
- Fs=self.Fs,
- noverlap=self.nover_specgram,
- pad_to=self.pad_to_specgram,
- sides=self.sides,
- mode=mode)
- assert_array_equal(speca, specb)
- assert_array_equal(freqspeca, freqspecb)
- assert_array_equal(ta, tb)
- @pytest.mark.parametrize(
- "mode, conv", [
- ("magnitude", np.abs),
- ("angle", np.angle),
- ("phase", lambda x: np.unwrap(np.angle(x), axis=0))
- ])
- def test_specgram_complex_equivalent(self, mode, conv):
- specc, freqspecc, tc = mlab.specgram(x=self.y,
- NFFT=self.NFFT_specgram,
- Fs=self.Fs,
- noverlap=self.nover_specgram,
- pad_to=self.pad_to_specgram,
- sides=self.sides,
- mode='complex')
- specm, freqspecm, tm = mlab.specgram(x=self.y,
- NFFT=self.NFFT_specgram,
- Fs=self.Fs,
- noverlap=self.nover_specgram,
- pad_to=self.pad_to_specgram,
- sides=self.sides,
- mode=mode)
- assert_array_equal(freqspecc, freqspecm)
- assert_array_equal(tc, tm)
- assert_allclose(conv(specc), specm, atol=1e-06)
- def test_psd_windowarray_equal(self):
- win = mlab.window_hanning(np.ones(self.NFFT_density_real))
- speca, fspa = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides,
- window=win)
- specb, fspb = mlab.psd(x=self.y,
- NFFT=self.NFFT_density,
- Fs=self.Fs,
- noverlap=self.nover_density,
- pad_to=self.pad_to_density,
- sides=self.sides)
- assert_array_equal(fspa, fspb)
- assert_allclose(speca, specb, atol=1e-08)
- # extra test for cohere...
- def test_cohere():
- N = 1024
- np.random.seed(19680801)
- x = np.random.randn(N)
- # phase offset
- y = np.roll(x, 20)
- # high-freq roll-off
- y = np.convolve(y, np.ones(20) / 20., mode='same')
- cohsq, f = mlab.cohere(x, y, NFFT=256, Fs=2, noverlap=128)
- assert_allclose(np.mean(cohsq), 0.837, atol=1.e-3)
- assert np.isreal(np.mean(cohsq))
- #*****************************************************************
- # These Tests where taken from SCIPY with some minor modifications
- # this can be retrieved from:
- # https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py
- #*****************************************************************
- class TestGaussianKDE:
- def test_kde_integer_input(self):
- """Regression test for #1181."""
- x1 = np.arange(5)
- kde = mlab.GaussianKDE(x1)
- y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869,
- 0.13480721]
- np.testing.assert_array_almost_equal(kde(x1), y_expected, decimal=6)
- def test_gaussian_kde_covariance_caching(self):
- x1 = np.array([-7, -5, 1, 4, 5], dtype=float)
- xs = np.linspace(-10, 10, num=5)
- # These expected values are from scipy 0.10, before some changes to
- # gaussian_kde. They were not compared with any external reference.
- y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754,
- 0.01664475]
- # set it to the default bandwidth.
- kde2 = mlab.GaussianKDE(x1, 'scott')
- y2 = kde2(xs)
- np.testing.assert_array_almost_equal(y_expected, y2, decimal=7)
- def test_kde_bandwidth_method(self):
- np.random.seed(8765678)
- n_basesample = 50
- xn = np.random.randn(n_basesample)
- # Default
- gkde = mlab.GaussianKDE(xn)
- # Supply a callable
- gkde2 = mlab.GaussianKDE(xn, 'scott')
- # Supply a scalar
- gkde3 = mlab.GaussianKDE(xn, bw_method=gkde.factor)
- xs = np.linspace(-7, 7, 51)
- kdepdf = gkde.evaluate(xs)
- kdepdf2 = gkde2.evaluate(xs)
- assert kdepdf.all() == kdepdf2.all()
- kdepdf3 = gkde3.evaluate(xs)
- assert kdepdf.all() == kdepdf3.all()
- class TestGaussianKDECustom:
- def test_no_data(self):
- """Pass no data into the GaussianKDE class."""
- with pytest.raises(ValueError):
- mlab.GaussianKDE([])
- def test_single_dataset_element(self):
- """Pass a single dataset element into the GaussianKDE class."""
- with pytest.raises(ValueError):
- mlab.GaussianKDE([42])
- def test_silverman_multidim_dataset(self):
- """Test silverman's for a multi-dimensional array."""
- x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- with pytest.raises(np.linalg.LinAlgError):
- mlab.GaussianKDE(x1, "silverman")
- def test_silverman_singledim_dataset(self):
- """Test silverman's output for a single dimension list."""
- x1 = np.array([-7, -5, 1, 4, 5])
- mygauss = mlab.GaussianKDE(x1, "silverman")
- y_expected = 0.76770389927475502
- assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
- def test_scott_multidim_dataset(self):
- """Test scott's output for a multi-dimensional array."""
- x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- with pytest.raises(np.linalg.LinAlgError):
- mlab.GaussianKDE(x1, "scott")
- def test_scott_singledim_dataset(self):
- """Test scott's output a single-dimensional array."""
- x1 = np.array([-7, -5, 1, 4, 5])
- mygauss = mlab.GaussianKDE(x1, "scott")
- y_expected = 0.72477966367769553
- assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
- def test_scalar_empty_dataset(self):
- """Test the scalar's cov factor for an empty array."""
- with pytest.raises(ValueError):
- mlab.GaussianKDE([], bw_method=5)
- def test_scalar_covariance_dataset(self):
- """Test a scalar's cov factor."""
- np.random.seed(8765678)
- n_basesample = 50
- multidim_data = [np.random.randn(n_basesample) for i in range(5)]
- kde = mlab.GaussianKDE(multidim_data, bw_method=0.5)
- assert kde.covariance_factor() == 0.5
- def test_callable_covariance_dataset(self):
- """Test the callable's cov factor for a multi-dimensional array."""
- np.random.seed(8765678)
- n_basesample = 50
- multidim_data = [np.random.randn(n_basesample) for i in range(5)]
- def callable_fun(x):
- return 0.55
- kde = mlab.GaussianKDE(multidim_data, bw_method=callable_fun)
- assert kde.covariance_factor() == 0.55
- def test_callable_singledim_dataset(self):
- """Test the callable's cov factor for a single-dimensional array."""
- np.random.seed(8765678)
- n_basesample = 50
- multidim_data = np.random.randn(n_basesample)
- kde = mlab.GaussianKDE(multidim_data, bw_method='silverman')
- y_expected = 0.48438841363348911
- assert_almost_equal(kde.covariance_factor(), y_expected, 7)
- def test_wrong_bw_method(self):
- """Test the error message that should be called when bw is invalid."""
- np.random.seed(8765678)
- n_basesample = 50
- data = np.random.randn(n_basesample)
- with pytest.raises(ValueError):
- mlab.GaussianKDE(data, bw_method="invalid")
- class TestGaussianKDEEvaluate:
- def test_evaluate_diff_dim(self):
- """
- Test the evaluate method when the dim's of dataset and points have
- different dimensions.
- """
- x1 = np.arange(3, 10, 2)
- kde = mlab.GaussianKDE(x1)
- x2 = np.arange(3, 12, 2)
- y_expected = [
- 0.08797252, 0.11774109, 0.11774109, 0.08797252, 0.0370153
- ]
- y = kde.evaluate(x2)
- np.testing.assert_array_almost_equal(y, y_expected, 7)
- def test_evaluate_inv_dim(self):
- """
- Invert the dimensions; i.e., for a dataset of dimension 1 [3, 2, 4],
- the points should have a dimension of 3 [[3], [2], [4]].
- """
- np.random.seed(8765678)
- n_basesample = 50
- multidim_data = np.random.randn(n_basesample)
- kde = mlab.GaussianKDE(multidim_data)
- x2 = [[1], [2], [3]]
- with pytest.raises(ValueError):
- kde.evaluate(x2)
- def test_evaluate_dim_and_num(self):
- """Tests if evaluated against a one by one array"""
- x1 = np.arange(3, 10, 2)
- x2 = np.array([3])
- kde = mlab.GaussianKDE(x1)
- y_expected = [0.08797252]
- y = kde.evaluate(x2)
- np.testing.assert_array_almost_equal(y, y_expected, 7)
- def test_evaluate_point_dim_not_one(self):
- x1 = np.arange(3, 10, 2)
- x2 = [np.arange(3, 10, 2), np.arange(3, 10, 2)]
- kde = mlab.GaussianKDE(x1)
- with pytest.raises(ValueError):
- kde.evaluate(x2)
- def test_evaluate_equal_dim_and_num_lt(self):
- x1 = np.arange(3, 10, 2)
- x2 = np.arange(3, 8, 2)
- kde = mlab.GaussianKDE(x1)
- y_expected = [0.08797252, 0.11774109, 0.11774109]
- y = kde.evaluate(x2)
- np.testing.assert_array_almost_equal(y, y_expected, 7)
- def test_psd_onesided_norm():
- u = np.array([0, 1, 2, 3, 1, 2, 1])
- dt = 1.0
- Su = np.abs(np.fft.fft(u) * dt)**2 / (dt * u.size)
- P, f = mlab.psd(u, NFFT=u.size, Fs=1/dt, window=mlab.window_none,
- detrend=mlab.detrend_none, noverlap=0, pad_to=None,
- scale_by_freq=None,
- sides='onesided')
- Su_1side = np.append([Su[0]], Su[1:4] + Su[4:][::-1])
- assert_allclose(P, Su_1side, atol=1e-06)
- def test_psd_oversampling():
- """Test the case len(x) < NFFT for psd()."""
- u = np.array([0, 1, 2, 3, 1, 2, 1])
- dt = 1.0
- Su = np.abs(np.fft.fft(u) * dt)**2 / (dt * u.size)
- P, f = mlab.psd(u, NFFT=u.size*2, Fs=1/dt, window=mlab.window_none,
- detrend=mlab.detrend_none, noverlap=0, pad_to=None,
- scale_by_freq=None,
- sides='onesided')
- Su_1side = np.append([Su[0]], Su[1:4] + Su[4:][::-1])
- assert_almost_equal(np.sum(P), np.sum(Su_1side)) # same energy
|