123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- #ifndef UNITY_GEOMETRICTOOLS_INCLUDED
- #define UNITY_GEOMETRICTOOLS_INCLUDED
- //-----------------------------------------------------------------------------
- // Intersection functions
- //-----------------------------------------------------------------------------
- // return furthest near intersection in x and closest far intersection in y
- // if (intersections.y > intersections.x) the ray hit the box, else it miss it
- // Assume dir is normalize
- float2 BoxRayIntersect(float3 start, float3 dir, float3 boxMin, float3 boxMax)
- {
- float3 invDir = 1.0 / dir;
- // Find the ray intersection with box plane
- float3 firstPlaneIntersect = (boxMin - start) * invDir;
- float3 secondPlaneIntersect = (boxMax - start) * invDir;
- // Get the closest/furthest of these intersections along the ray (Ok because x/0 give +inf and -x/0 give -inf )
- float3 closestPlane = min(firstPlaneIntersect, secondPlaneIntersect);
- float3 furthestPlane = max(firstPlaneIntersect, secondPlaneIntersect);
- float2 intersections;
- // Find the furthest near intersection
- intersections.x = max(closestPlane.x, max(closestPlane.y, closestPlane.z));
- // Find the closest far intersection
- intersections.y = min(min(furthestPlane.x, furthestPlane.y), furthestPlane.z);
- return intersections;
- }
- // This simplified version assume that we care about the result only when we are inside the box
- // Assume dir is normalize
- float BoxRayIntersectSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax)
- {
- float3 invDir = 1.0 / dir;
- // Find the ray intersection with box plane
- float3 rbmin = (boxMin - start) * invDir;
- float3 rbmax = (boxMax - start) * invDir;
- float3 rbminmax = (dir > 0.0) ? rbmax : rbmin;
- return min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- }
- // Assume Sphere is at the origin (i.e start = position - spherePosition)
- float2 SphereRayIntersect(float3 start, float3 dir, float radius, out bool intersect)
- {
- float a = dot(dir, dir);
- float b = dot(dir, start) * 2.0;
- float c = dot(start, start) - radius * radius;
- float discriminant = b * b - 4.0 * a * c;
- float2 intersections = float2(0.0, 0.0);
- intersect = false;
- if (discriminant < 0.0 || a == 0.0)
- {
- intersections.x = 0.0;
- intersections.y = 0.0;
- }
- else
- {
- float sqrtDiscriminant = sqrt(discriminant);
- intersections.x = (-b - sqrtDiscriminant) / (2.0 * a);
- intersections.y = (-b + sqrtDiscriminant) / (2.0 * a);
- intersect = true;
- }
- return intersections;
- }
- // This simplified version assume that we care about the result only when we are inside the sphere
- // Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized
- // Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
- float SphereRayIntersectSimple(float3 start, float3 dir, float radius)
- {
- float b = dot(dir, start) * 2.0;
- float c = dot(start, start) - radius * radius;
- float discriminant = b * b - 4.0 * c;
- return abs(sqrt(discriminant) - b) * 0.5;
- }
- float3 RayPlaneIntersect(in float3 rayOrigin, in float3 rayDirection, in float3 planeOrigin, in float3 planeNormal)
- {
- float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection);
- return rayOrigin + rayDirection * dist;
- }
- //-----------------------------------------------------------------------------
- // Miscellaneous functions
- //-----------------------------------------------------------------------------
- // Box is AABB
- float DistancePointBox(float3 position, float3 boxMin, float3 boxMax)
- {
- return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0)));
- }
- float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal)
- {
- return position - (dot(position - planePosition, planeNormal) * planeNormal);
- }
- // Plane equation: {(a, b, c) = N, d = -dot(N, P)}.
- // Returns the distance from the plane to the point 'p' along the normal.
- // Positive -> in front (above), negative -> behind (below).
- float DistanceFromPlane(float3 p, float4 plane)
- {
- return dot(float4(p, 1.0), plane);
- }
- // Returns 'true' if the triangle is outside of the frustum.
- // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
- bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
- {
- bool outside = false;
- for (int i = 0; i < numPlanes; i++)
- {
- // If all 3 points are behind any of the planes, we cull.
- outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]),
- DistanceFromPlane(p1, frustumPlanes[i]),
- DistanceFromPlane(p2, frustumPlanes[i])) < epsilon;
- }
- return outside;
- }
- // Returns 'true' if the edge of the triangle is outside of the frustum.
- // The edges are defined s.t. they are on the opposite side of the point with the given index.
- // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
- bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
- {
- bool3 edgesOutside = false;
- for (int i = 0; i < numPlanes; i++)
- {
- bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon,
- DistanceFromPlane(p1, frustumPlanes[i]) < epsilon,
- DistanceFromPlane(p2, frustumPlanes[i]) < epsilon);
- // If both points of the edge are behind any of the planes, we cull.
- edgesOutside.x = edgesOutside.x || (pointsOutside.y && pointsOutside.z);
- edgesOutside.y = edgesOutside.y || (pointsOutside.x && pointsOutside.z);
- edgesOutside.z = edgesOutside.z || (pointsOutside.x && pointsOutside.y);
- }
- return edgesOutside;
- }
- // Returns 'true' if a triangle defined by 3 vertices is back-facing.
- // 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle.
- // 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1).
- bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding)
- {
- float3 edge1 = p1 - p0;
- float3 edge2 = p2 - p0;
- float3 N = cross(edge1, edge2);
- float3 V = viewPos - p0;
- float NdotV = dot(N, V) * winding;
- // Optimize:
- // NdotV / (length(N) * length(V)) < Epsilon
- // NdotV < Epsilon * length(N) * length(V)
- // NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V))
- // NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V))
- return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V));
- }
- #endif // UNITY_GEOMETRICTOOLS_INCLUDED
|