12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436 |
- /**
- * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
- * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
- * Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
- * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
- * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * this software and associated documentation files (the "Software"), to deal in
- * the Software without restriction, including without limitation the rights to
- * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
- * of the Software, and to permit persons to whom the Software is furnished to
- * do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software. As clarification, there
- * is no requirement that the copyright notice and permission be included in
- * binary distributions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- /**
- * _______ ___ ___ ___ ___
- * / || \/ | / \ / \
- * | (---- | \ / | / ^ \ / ^ \
- * \ \ | |\/| | / /_\ \ / /_\ \
- * ----) | | | | | / _____ \ / _____ \
- * |_______/ |__| |__| /__/ \__\ /__/ \__\
- *
- * E N H A N C E D
- * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
- *
- * http://www.iryoku.com/smaa/
- *
- * Hi, welcome aboard!
- *
- * Here you'll find instructions to get the shader up and running as fast as
- * possible.
- *
- * IMPORTANTE NOTICE: when updating, remember to update both this file and the
- * precomputed textures! They may change from version to version.
- *
- * The shader has three passes, chained together as follows:
- *
- * |input|------------------
- * v |
- * [ SMAA*EdgeDetection ] |
- * v |
- * |edgesTex| |
- * v |
- * [ SMAABlendingWeightCalculation ] |
- * v |
- * |blendTex| |
- * v |
- * [ SMAANeighborhoodBlending ] <------
- * v
- * |output|
- *
- * Note that each [pass] has its own vertex and pixel shader. Remember to use
- * oversized triangles instead of quads to avoid overshading along the
- * diagonal.
- *
- * You've three edge detection methods to choose from: luma, color or depth.
- * They represent different quality/performance and anti-aliasing/sharpness
- * tradeoffs, so our recommendation is for you to choose the one that best
- * suits your particular scenario:
- *
- * - Depth edge detection is usually the fastest but it may miss some edges.
- *
- * - Luma edge detection is usually more expensive than depth edge detection,
- * but catches visible edges that depth edge detection can miss.
- *
- * - Color edge detection is usually the most expensive one but catches
- * chroma-only edges.
- *
- * For quickstarters: just use luma edge detection.
- *
- * The general advice is to not rush the integration process and ensure each
- * step is done correctly (don't try to integrate SMAA T2x with predicated edge
- * detection from the start!). Ok then, let's go!
- *
- * 1. The first step is to create two RGBA temporal render targets for holding
- * |edgesTex| and |blendTex|.
- *
- * In DX10 or DX11, you can use a RG render target for the edges texture.
- * In the case of NVIDIA GPUs, using RG render targets seems to actually be
- * slower.
- *
- * On the Xbox 360, you can use the same render target for resolving both
- * |edgesTex| and |blendTex|, as they aren't needed simultaneously.
- *
- * 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared
- * each frame. Do not forget to clear the alpha channel!
- *
- * 3. The next step is loading the two supporting precalculated textures,
- * 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
- * C++ headers, and also as regular DDS files. They'll be needed for the
- * 'SMAABlendingWeightCalculation' pass.
- *
- * If you use the C++ headers, be sure to load them in the format specified
- * inside of them.
- *
- * You can also compress 'areaTex' and 'searchTex' using BC5 and BC4
- * respectively, if you have that option in your content processor pipeline.
- * When compressing then, you get a non-perceptible quality decrease, and a
- * marginal performance increase.
- *
- * 4. All samplers must be set to linear filtering and clamp.
- *
- * After you get the technique working, remember that 64-bit inputs have
- * half-rate linear filtering on GCN.
- *
- * If SMAA is applied to 64-bit color buffers, switching to point filtering
- * when accesing them will increase the performance. Search for
- * 'SMAASamplePoint' to see which textures may benefit from point
- * filtering, and where (which is basically the color input in the edge
- * detection and resolve passes).
- *
- * 5. All texture reads and buffer writes must be non-sRGB, with the exception
- * of the input read and the output write in
- * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
- * this last pass are not possible, the technique will work anyway, but
- * will perform antialiasing in gamma space.
- *
- * IMPORTANT: for best results the input read for the color/luma edge
- * detection should *NOT* be sRGB.
- *
- * 6. Before including SMAA.h you'll have to setup the render target metrics,
- * the target and any optional configuration defines. Optionally you can
- * use a preset.
- *
- * You have the following targets available:
- * SMAA_HLSL_3
- * SMAA_HLSL_4
- * SMAA_HLSL_4_1
- * SMAA_GLSL_3 *
- * SMAA_GLSL_4 *
- *
- * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below).
- *
- * And four presets:
- * SMAA_PRESET_LOW (%60 of the quality)
- * SMAA_PRESET_MEDIUM (%80 of the quality)
- * SMAA_PRESET_HIGH (%95 of the quality)
- * SMAA_PRESET_ULTRA (%99 of the quality)
- *
- * For example:
- * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
- * #define SMAA_HLSL_4
- * #define SMAA_PRESET_HIGH
- * #include "SMAA.h"
- *
- * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a
- * uniform variable. The code is designed to minimize the impact of not
- * using a constant value, but it is still better to hardcode it.
- *
- * Depending on how you encoded 'areaTex' and 'searchTex', you may have to
- * add (and customize) the following defines before including SMAA.h:
- * #define SMAA_AREATEX_SELECT(sample) sample.rg
- * #define SMAA_SEARCHTEX_SELECT(sample) sample.r
- *
- * If your engine is already using porting macros, you can define
- * SMAA_CUSTOM_SL, and define the porting functions by yourself.
- *
- * 7. Then, you'll have to setup the passes as indicated in the scheme above.
- * You can take a look into SMAA.fx, to see how we did it for our demo.
- * Checkout the function wrappers, you may want to copy-paste them!
- *
- * 8. It's recommended to validate the produced |edgesTex| and |blendTex|.
- * You can use a screenshot from your engine to compare the |edgesTex|
- * and |blendTex| produced inside of the engine with the results obtained
- * with the reference demo.
- *
- * 9. After you get the last pass to work, it's time to optimize. You'll have
- * to initialize a stencil buffer in the first pass (discard is already in
- * the code), then mask execution by using it the second pass. The last
- * pass should be executed in all pixels.
- *
- *
- * After this point you can choose to enable predicated thresholding,
- * temporal supersampling and motion blur integration:
- *
- * a) If you want to use predicated thresholding, take a look into
- * SMAA_PREDICATION; you'll need to pass an extra texture in the edge
- * detection pass.
- *
- * b) If you want to enable temporal supersampling (SMAA T2x):
- *
- * 1. The first step is to render using subpixel jitters. I won't go into
- * detail, but it's as simple as moving each vertex position in the
- * vertex shader, you can check how we do it in our DX10 demo.
- *
- * 2. Then, you must setup the temporal resolve. You may want to take a look
- * into SMAAResolve for resolving 2x modes. After you get it working, you'll
- * probably see ghosting everywhere. But fear not, you can enable the
- * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
- * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded.
- *
- * 3. The next step is to apply SMAA to each subpixel jittered frame, just as
- * done for 1x.
- *
- * 4. At this point you should already have something usable, but for best
- * results the proper area textures must be set depending on current jitter.
- * For this, the parameter 'subsampleIndices' of
- * 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
- * mode:
- *
- * @SUBSAMPLE_INDICES
- *
- * | S# | Camera Jitter | subsampleIndices |
- * +----+------------------+---------------------+
- * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) |
- * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) |
- *
- * These jitter positions assume a bottom-to-top y axis. S# stands for the
- * sample number.
- *
- * More information about temporal supersampling here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * c) If you want to enable spatial multisampling (SMAA S2x):
- *
- * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
- * created with:
- * - DX10: see below (*)
- * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
- * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
- *
- * This allows to ensure that the subsample order matches the table in
- * @SUBSAMPLE_INDICES.
- *
- * (*) In the case of DX10, we refer the reader to:
- * - SMAA::detectMSAAOrder and
- * - SMAA::msaaReorder
- *
- * These functions allow to match the standard multisample patterns by
- * detecting the subsample order for a specific GPU, and reordering
- * them appropriately.
- *
- * 2. A shader must be run to output each subsample into a separate buffer
- * (DX10 is required). You can use SMAASeparate for this purpose, or just do
- * it in an existing pass (for example, in the tone mapping pass, which has
- * the advantage of feeding tone mapped subsamples to SMAA, which will yield
- * better results).
- *
- * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
- * the results in the final buffer. The second run should alpha blend with
- * the existing final buffer using a blending factor of 0.5.
- * 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
- * b).
- *
- * d) If you want to enable temporal supersampling on top of SMAA S2x
- * (which actually is SMAA 4x):
- *
- * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
- * to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
- * must be set as follows:
- *
- * | F# | S# | Camera Jitter | Net Jitter | subsampleIndices |
- * +----+----+--------------------+-------------------+----------------------+
- * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) |
- * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) |
- * +----+----+--------------------+-------------------+----------------------+
- * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) |
- * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) |
- *
- * These jitter positions assume a bottom-to-top y axis. F# stands for the
- * frame number. S# stands for the sample number.
- *
- * 2. After calculating SMAA S2x for current frame (with the new subsample
- * indices), previous frame must be reprojected as in SMAA T2x mode (see
- * point b).
- *
- * e) If motion blur is used, you may want to do the edge detection pass
- * together with motion blur. This has two advantages:
- *
- * 1. Pixels under heavy motion can be omitted from the edge detection process.
- * For these pixels we can just store "no edge", as motion blur will take
- * care of them.
- * 2. The center pixel tap is reused.
- *
- * Note that in this case depth testing should be used instead of stenciling,
- * as we have to write all the pixels in the motion blur pass.
- *
- * That's it!
- */
- //-----------------------------------------------------------------------------
- // SMAA Presets
- /**
- * Note that if you use one of these presets, the following configuration
- * macros will be ignored if set in the "Configurable Defines" section.
- */
- #if defined(SMAA_PRESET_LOW)
- #define SMAA_THRESHOLD 0.15
- #define SMAA_MAX_SEARCH_STEPS 4
- #define SMAA_DISABLE_DIAG_DETECTION
- #define SMAA_DISABLE_CORNER_DETECTION
- #elif defined(SMAA_PRESET_MEDIUM)
- #define SMAA_THRESHOLD 0.1
- #define SMAA_MAX_SEARCH_STEPS 8
- #define SMAA_DISABLE_DIAG_DETECTION
- #define SMAA_DISABLE_CORNER_DETECTION
- #elif defined(SMAA_PRESET_HIGH)
- #define SMAA_THRESHOLD 0.1
- #define SMAA_MAX_SEARCH_STEPS 16
- #define SMAA_MAX_SEARCH_STEPS_DIAG 8
- #define SMAA_CORNER_ROUNDING 25
- #elif defined(SMAA_PRESET_ULTRA)
- #define SMAA_THRESHOLD 0.05
- #define SMAA_MAX_SEARCH_STEPS 32
- #define SMAA_MAX_SEARCH_STEPS_DIAG 16
- #define SMAA_CORNER_ROUNDING 25
- #endif
- //-----------------------------------------------------------------------------
- // Configurable Defines
- /**
- * SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
- * Lowering this value you will be able to detect more edges at the expense of
- * performance.
- *
- * Range: [0, 0.5]
- * 0.1 is a reasonable value, and allows to catch most visible edges.
- * 0.05 is a rather overkill value, that allows to catch 'em all.
- *
- * If temporal supersampling is used, 0.2 could be a reasonable value, as low
- * contrast edges are properly filtered by just 2x.
- */
- #ifndef SMAA_THRESHOLD
- #define SMAA_THRESHOLD 0.1
- #endif
- /**
- * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
- *
- * Range: depends on the depth range of the scene.
- */
- #ifndef SMAA_DEPTH_THRESHOLD
- #define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
- #endif
- /**
- * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
- * horizontal/vertical pattern searches, at each side of the pixel.
- *
- * In number of pixels, it's actually the double. So the maximum line length
- * perfectly handled by, for example 16, is 64 (by perfectly, we meant that
- * longer lines won't look as good, but still antialiased).
- *
- * Range: [0, 112]
- */
- #ifndef SMAA_MAX_SEARCH_STEPS
- #define SMAA_MAX_SEARCH_STEPS 16
- #endif
- /**
- * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
- * diagonal pattern searches, at each side of the pixel. In this case we jump
- * one pixel at time, instead of two.
- *
- * Range: [0, 20]
- *
- * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
- * steps), but it can have a significant impact on older machines.
- *
- * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing.
- */
- #ifndef SMAA_MAX_SEARCH_STEPS_DIAG
- #define SMAA_MAX_SEARCH_STEPS_DIAG 8
- #endif
- /**
- * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
- *
- * Range: [0, 100]
- *
- * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing.
- */
- #ifndef SMAA_CORNER_ROUNDING
- #define SMAA_CORNER_ROUNDING 25
- #endif
- /**
- * If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times
- * bigger contrast than current edge, current edge will be discarded.
- *
- * This allows to eliminate spurious crossing edges, and is based on the fact
- * that, if there is too much contrast in a direction, that will hide
- * perceptually contrast in the other neighbors.
- */
- #ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
- #define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
- #endif
- /**
- * Predicated thresholding allows to better preserve texture details and to
- * improve performance, by decreasing the number of detected edges using an
- * additional buffer like the light accumulation buffer, object ids or even the
- * depth buffer (the depth buffer usage may be limited to indoor or short range
- * scenes).
- *
- * It locally decreases the luma or color threshold if an edge is found in an
- * additional buffer (so the global threshold can be higher).
- *
- * This method was developed by Playstation EDGE MLAA team, and used in
- * Killzone 3, by using the light accumulation buffer. More information here:
- * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
- */
- #ifndef SMAA_PREDICATION
- #define SMAA_PREDICATION 0
- #endif
- /**
- * Threshold to be used in the additional predication buffer.
- *
- * Range: depends on the input, so you'll have to find the magic number that
- * works for you.
- */
- #ifndef SMAA_PREDICATION_THRESHOLD
- #define SMAA_PREDICATION_THRESHOLD 0.01
- #endif
- /**
- * How much to scale the global threshold used for luma or color edge
- * detection when using predication.
- *
- * Range: [1, 5]
- */
- #ifndef SMAA_PREDICATION_SCALE
- #define SMAA_PREDICATION_SCALE 2.0
- #endif
- /**
- * How much to locally decrease the threshold.
- *
- * Range: [0, 1]
- */
- #ifndef SMAA_PREDICATION_STRENGTH
- #define SMAA_PREDICATION_STRENGTH 0.4
- #endif
- /**
- * Temporal reprojection allows to remove ghosting artifacts when using
- * temporal supersampling. We use the CryEngine 3 method which also introduces
- * velocity weighting. This feature is of extreme importance for totally
- * removing ghosting. More information here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * Note that you'll need to setup a velocity buffer for enabling reprojection.
- * For static geometry, saving the previous depth buffer is a viable
- * alternative.
- */
- #ifndef SMAA_REPROJECTION
- #define SMAA_REPROJECTION 0
- #endif
- /**
- * Temporal reprojection allows to remove ghosting artifacts when using
- * temporal supersampling. However, the default reprojection requires a velocity buffer
- * in order to function properly.
- *
- * A velocity buffer might not always be available (hi Unity 5!). To handle such cases
- * we provide a UV-based approximation for calculating motion vectors on the fly.
- */
- #ifndef SMAA_UV_BASED_REPROJECTION
- #define SMAA_UV_BASED_REPROJECTION 0
- #endif
- /**
- * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
- * remove ghosting trails behind the moving object, which are not removed by
- * just using reprojection. Using low values will exhibit ghosting, while using
- * high values will disable temporal supersampling under motion.
- *
- * Behind the scenes, velocity weighting removes temporal supersampling when
- * the velocity of the subsamples differs (meaning they are different objects).
- *
- * Range: [0, 80]
- */
- #ifndef SMAA_REPROJECTION_WEIGHT_SCALE
- #define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
- #endif
- /**
- * On some compilers, discard cannot be used in vertex shaders. Thus, they need
- * to be compiled separately.
- */
- #ifndef SMAA_INCLUDE_VS
- #define SMAA_INCLUDE_VS 1
- #endif
- #ifndef SMAA_INCLUDE_PS
- #define SMAA_INCLUDE_PS 1
- #endif
- //-----------------------------------------------------------------------------
- // Texture Access Defines
- #ifndef SMAA_AREATEX_SELECT
- #if defined(SMAA_HLSL_3)
- #define SMAA_AREATEX_SELECT(sample) sample.ra
- #else
- #define SMAA_AREATEX_SELECT(sample) sample.rg
- #endif
- #endif
- #ifndef SMAA_SEARCHTEX_SELECT
- #define SMAA_SEARCHTEX_SELECT(sample) sample.r
- #endif
- #ifndef SMAA_DECODE_VELOCITY
- #define SMAA_DECODE_VELOCITY(sample) sample.rg
- #endif
- //-----------------------------------------------------------------------------
- // Non-Configurable Defines
- #define SMAA_AREATEX_MAX_DISTANCE 16
- #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
- #define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0))
- #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
- #define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0)
- #define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0)
- #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
- //-----------------------------------------------------------------------------
- // Porting Functions
- #if defined(SMAA_HLSL_3)
- #define SMAATexture2D(tex) sampler2D tex
- #define SMAATexturePass2D(tex) tex
- #define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
- #define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
- #define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0))
- #define SMAASample(tex, coord) tex2D(tex, coord)
- #define SMAASamplePoint(tex, coord) tex2D(tex, coord)
- #define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy)
- //#define SMAA_FLATTEN [flatten]
- //#define SMAA_BRANCH [branch]
- #define SMAA_FLATTEN
- #define SMAA_BRANCH
- #endif
- #if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1)
- //SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
- //SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
- #define SMAATexture2D(tex) TEXTURE2D_X(tex)
- #define SMAATexture2D_Non_Array(tex) Texture2D tex
- #define SMAATexturePass2D(tex) tex
- #define SMAASampleLevelZero(tex, coord) SAMPLE_TEXTURE2D_X_LOD(tex, LinearSampler, coord, 0)
- #define SMAASampleLevelZeroNoRescale(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
- #define SMAASampleLevelZeroPoint(tex, coord) SAMPLE_TEXTURE2D_X_LOD(tex, PointSampler, coord, 0)
- #define SMAASampleLevelZeroOffset(tex, coord, offset) SAMPLE_TEXTURE2D_X_LOD(tex, LinearSampler, coord + offset * SMAA_RT_METRICS.xy, 0)
- #define SMAASample(tex, coord) SAMPLE_TEXTURE2D_X(tex, LinearSampler, coord)
- #define SMAASamplePoint(tex, coord) SAMPLE_TEXTURE2D_X(tex, PointSampler, coord)
- #define SMAASampleOffset(tex, coord, offset) SAMPLE_TEXTURE2D_X(tex, LinearSampler, coord + offset * SMAA_RT_METRICS.xy)
- #define SMAA_FLATTEN [flatten]
- #define SMAA_BRANCH [branch]
- #define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex
- #define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
- #endif
- #if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4)
- #define SMAATexture2D(tex) sampler2D tex
- #define SMAATexturePass2D(tex) tex
- #define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
- #define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
- #define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
- #define SMAASample(tex, coord) texture(tex, coord)
- #define SMAASamplePoint(tex, coord) texture(tex, coord)
- #define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
- #define SMAA_FLATTEN
- #define SMAA_BRANCH
- #define lerp(a, b, t) mix(a, b, t)
- #define saturate(a) clamp(a, 0.0, 1.0)
- #if defined(SMAA_GLSL_4)
- #define mad(a, b, c) fma(a, b, c)
- #define SMAAGather(tex, coord) textureGather(tex, coord)
- #else
- #define mad(a, b, c) ((a) * (b) + (c))
- #endif
- #define float2 vec2
- #define float3 vec3
- #define float4 vec4
- #define int2 ivec2
- #define int3 ivec3
- #define int4 ivec4
- #define bool2 bvec2
- #define bool3 bvec3
- #define bool4 bvec4
- #endif
- #if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL)
- #error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL
- #endif
- //-----------------------------------------------------------------------------
- // Misc functions
- /**
- * Gathers current pixel, and the top-left neighbors.
- */
- float3 SMAAGatherNeighbours(float2 texcoord,
- float4 offset[3],
- SMAATexture2D(tex)) {
- #ifdef SMAAGather
- return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, -0.5)).grb;
- #else
- float P = SMAASamplePoint(tex, texcoord).r;
- float Pleft = SMAASamplePoint(tex, offset[0].xy).r;
- float Ptop = SMAASamplePoint(tex, offset[0].zw).r;
- return float3(P, Pleft, Ptop);
- #endif
- }
- /**
- * Adjusts the threshold by means of predication.
- */
- float2 SMAACalculatePredicatedThreshold(float2 texcoord,
- float4 offset[3],
- SMAATexture2D(predicationTex)) {
- float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(predicationTex));
- float2 delta = abs(neighbours.xx - neighbours.yz);
- float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
- return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
- }
- /**
- * Conditional move:
- */
- void SMAAMovc(bool2 cond, inout float2 variable, float2 value) {
- SMAA_FLATTEN if (cond.x) variable.x = value.x;
- SMAA_FLATTEN if (cond.y) variable.y = value.y;
- }
- void SMAAMovc(bool4 cond, inout float4 variable, float4 value) {
- SMAAMovc(cond.xy, variable.xy, value.xy);
- SMAAMovc(cond.zw, variable.zw, value.zw);
- }
- #if SMAA_INCLUDE_VS
- //-----------------------------------------------------------------------------
- // Vertex Shaders
- /**
- * Edge Detection Vertex Shader
- */
- void SMAAEdgeDetectionVS(float2 texcoord,
- out float4 offset[3]) {
- offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-1.0, 0.0, 0.0, -1.0), texcoord.xyxy);
- offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy);
- offset[2] = mad(SMAA_RT_METRICS.xyxy, float4(-2.0, 0.0, 0.0, -2.0), texcoord.xyxy);
- }
- /**
- * Blend Weight Calculation Vertex Shader
- */
- void SMAABlendingWeightCalculationVS(float2 texcoord,
- out float2 pixcoord,
- out float4 offset[3]) {
- pixcoord = texcoord * SMAA_RT_METRICS.zw;
- // We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
- offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy);
- offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy);
- // And these for the searches, they indicate the ends of the loops:
- offset[2] = mad(SMAA_RT_METRICS.xxyy,
- float4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS),
- float4(offset[0].xz, offset[1].yw));
- }
- /**
- * Neighborhood Blending Vertex Shader
- */
- void SMAANeighborhoodBlendingVS(float2 texcoord,
- out float4 offset) {
- offset = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy);
- }
- #endif // SMAA_INCLUDE_VS
- #if SMAA_INCLUDE_PS
- //-----------------------------------------------------------------------------
- // Edge Detection Pixel Shaders (First Pass)
- /**
- * Luma Edge Detection
- *
- * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
- * thus 'colorTex' should be a non-sRGB texture.
- */
- float2 SMAALumaEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D(colorTex)
- #if SMAA_PREDICATION
- , SMAATexture2D(predicationTex)
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION
- float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex));
- #else
- float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
- // Calculate lumas:
- float3 weights = float3(0.2126, 0.7152, 0.0722);
- float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights);
- float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights);
- float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights);
- // We do the usual threshold:
- float4 delta;
- delta.xy = abs(L - float2(Lleft, Ltop));
- float2 edges = step(threshold, delta.xy);
- // Then discard if there is no edge:
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
- // Calculate right and bottom deltas:
- float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights);
- float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights);
- delta.zw = abs(L - float2(Lright, Lbottom));
- // Calculate the maximum delta in the direct neighborhood:
- float2 maxDelta = max(delta.xy, delta.zw);
- // Calculate left-left and top-top deltas:
- float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights);
- float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights);
- delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
- // Calculate the final maximum delta:
- maxDelta = max(maxDelta.xy, delta.zw);
- float finalDelta = max(maxDelta.x, maxDelta.y);
- // Local contrast adaptation:
- #if !defined(SHADER_API_OPENGL)
- edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
- #endif
- return edges;
- }
- /**
- * Color Edge Detection
- *
- * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
- * thus 'colorTex' should be a non-sRGB texture.
- */
- float2 SMAAColorEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D(colorTex)
- #if SMAA_PREDICATION
- , SMAATexture2D(predicationTex)
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION
- float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex);
- #else
- float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
- // Calculate color deltas:
- float4 delta;
- float3 C = PositivePow(SMAASamplePoint(colorTex, texcoord).rgb, GAMMA_FOR_EDGE_DETECTION);
- float3 Cleft = PositivePow(SMAASamplePoint(colorTex, offset[0].xy).rgb, GAMMA_FOR_EDGE_DETECTION);
- float3 t = abs(C - Cleft);
- delta.x = max(max(t.r, t.g), t.b);
- float3 Ctop = PositivePow(SMAASamplePoint(colorTex, offset[0].zw).rgb, GAMMA_FOR_EDGE_DETECTION);
- t = abs(C - Ctop);
- delta.y = max(max(t.r, t.g), t.b);
- // We do the usual threshold:
- float2 edges = step(threshold, delta.xy);
- // Then discard if there is no edge:
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
- // Calculate right and bottom deltas:
- float3 Cright = PositivePow(SMAASamplePoint(colorTex, offset[1].xy).rgb, GAMMA_FOR_EDGE_DETECTION);
- t = abs(C - Cright);
- delta.z = max(max(t.r, t.g), t.b);
- float3 Cbottom = PositivePow(SMAASamplePoint(colorTex, offset[1].zw).rgb, GAMMA_FOR_EDGE_DETECTION);
- t = abs(C - Cbottom);
- delta.w = max(max(t.r, t.g), t.b);
- // Calculate the maximum delta in the direct neighborhood:
- float2 maxDelta = max(delta.xy, delta.zw);
- // Calculate left-left and top-top deltas:
- float3 Cleftleft = PositivePow(SMAASamplePoint(colorTex, offset[2].xy).rgb, GAMMA_FOR_EDGE_DETECTION);
- t = abs(Cleft - Cleftleft);
- delta.z = max(max(t.r, t.g), t.b);
- float3 Ctoptop = PositivePow(SMAASamplePoint(colorTex, offset[2].zw).rgb, GAMMA_FOR_EDGE_DETECTION);
- t = abs(Ctop - Ctoptop);
- delta.w = max(max(t.r, t.g), t.b);
- // Calculate the final maximum delta:
- maxDelta = max(maxDelta.xy, delta.zw);
- float finalDelta = max(maxDelta.x, maxDelta.y);
- // Local contrast adaptation:
- #if !defined(SHADER_API_OPENGL)
- edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
- #endif
- return edges;
- }
- /**
- * Depth Edge Detection
- */
- float2 SMAADepthEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D(depthTex)) {
- float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex));
- float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z));
- float2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
- return edges;
- }
- //-----------------------------------------------------------------------------
- // Diagonal Search Functions
- #if !defined(SMAA_DISABLE_DIAG_DETECTION)
- /**
- * Allows to decode two binary values from a bilinear-filtered access.
- */
- float2 SMAADecodeDiagBilinearAccess(float2 e) {
- // Bilinear access for fetching 'e' have a 0.25 offset, and we are
- // interested in the R and G edges:
- //
- // +---G---+-------+
- // | x o R x |
- // +-------+-------+
- //
- // Then, if one of these edge is enabled:
- // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
- // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
- //
- // This function will unpack the values (mad + mul + round):
- // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
- e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75);
- return round(e);
- }
- float4 SMAADecodeDiagBilinearAccess(float4 e) {
- e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75);
- return round(e);
- }
- /**
- * These functions allows to perform diagonal pattern searches.
- */
- float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) {
- float4 coord = float4(texcoord, -1.0, 1.0);
- float3 t = float3(SMAA_RT_METRICS.xy, 1.0);
- while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
- coord.w > 0.9) {
- coord.xyz = mad(t, float3(dir, 1.0), coord.xyz);
- e = SMAASampleLevelZero(edgesTex, coord.xy).rg;
- coord.w = dot(e, float2(0.5, 0.5));
- }
- return coord.zw;
- }
- float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) {
- float4 coord = float4(texcoord, -1.0, 1.0);
- coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization
- float3 t = float3(SMAA_RT_METRICS.xy, 1.0);
- while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
- coord.w > 0.9) {
- coord.xyz = mad(t, float3(dir, 1.0), coord.xyz);
- // @SearchDiag2Optimization
- // Fetch both edges at once using bilinear filtering:
- e = SMAASampleLevelZero(edgesTex, coord.xy).rg;
- e = SMAADecodeDiagBilinearAccess(e);
- // Non-optimized version:
- // e.g = SMAASampleLevelZero(edgesTex, coord.xy).g;
- // e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r;
- coord.w = dot(e, float2(0.5, 0.5));
- }
- return coord.zw;
- }
- /**
- * Similar to SMAAArea, this calculates the area corresponding to a certain
- * diagonal distance and crossing edges 'e'.
- */
- float2 SMAAAreaDiag(SMAATexture2D_Non_Array(areaTex), float2 dist, float2 e, float offset) {
- float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
- // We do a scale and bias for mapping to texel space:
- texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
- // Diagonal areas are on the second half of the texture:
- texcoord.x += 0.5;
- // Move to proper place, according to the subpixel offset:
- texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
- // Do it!
- return SMAA_AREATEX_SELECT(SMAASampleLevelZeroNoRescale(areaTex, texcoord));
- }
- /**
- * This searches for diagonal patterns and returns the corresponding weights.
- */
- float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) {
- float2 weights = float2(0.0, 0.0);
- // Search for the line ends:
- float4 d;
- float2 end;
- if (e.r > 0.0) {
- d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end);
- d.x += float(end.y > 0.9);
- }
- else
- d.xz = float2(0.0, 0.0);
- d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end);
- SMAA_BRANCH
- if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
- // Fetch the crossing edges:
- float4 coords = mad(float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
- float4 c;
- c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg;
- c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).rg;
- c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw);
- // Non-optimized version:
- // float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
- // float4 c;
- // c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
- // c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r;
- // c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g;
- // c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r;
- // Merge crossing edges at each side into a single value:
- float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
- // Remove the crossing edge if we didn't found the end of the line:
- SMAAMovc(bool2(step(float2(0.9, 0.9), d.zw)), cc, float2(0.0, 0.0));
- // Fetch the areas for this line:
- weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z);
- }
- // Search for the line ends:
- d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end);
- if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) {
- d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end);
- d.y += float(end.y > 0.9);
- }
- else
- d.yw = float2(0.0, 0.0);
- SMAA_BRANCH
- if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
- // Fetch the crossing edges:
- float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
- float4 c;
- c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
- c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0, -1)).r;
- c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).gr;
- float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
- // Remove the crossing edge if we didn't found the end of the line:
- SMAAMovc(bool2(step(float2(0.9, 0.9), d.zw)), cc, float2(0.0, 0.0));
- // Fetch the areas for this line:
- weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr;
- }
- return weights;
- }
- #endif
- //-----------------------------------------------------------------------------
- // Horizontal/Vertical Search Functions
- /**
- * This allows to determine how much length should we add in the last step
- * of the searches. It takes the bilinearly interpolated edge (see
- * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
- * crossing edges are active.
- */
- float SMAASearchLength(SMAATexture2D_Non_Array(searchTex), float2 e, float offset) {
- // The texture is flipped vertically, with left and right cases taking half
- // of the space horizontally:
- float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0);
- float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0);
- // Scale and bias to access texel centers:
- scale += float2(-1.0, 1.0);
- bias += float2(0.5, -0.5);
- // Convert from pixel coordinates to texcoords:
- // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
- scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
- bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
- // Lookup the search texture:
- return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZeroNoRescale(searchTex, mad(scale, e, bias)));
- }
- /**
- * Horizontal/vertical search functions for the 2nd pass.
- */
- float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) {
- /**
- * @PSEUDO_GATHER4
- * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
- * sample between edge, thus fetching four edges in a row.
- * Sampling with different offsets in each direction allows to disambiguate
- * which edges are active from the four fetched ones.
- */
- float2 e = float2(0.0, 1.0);
- while (texcoord.x > end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
- }
- float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25);
- return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
- // Non-optimized version:
- // We correct the previous (-0.25, -0.125) offset we applied:
- // texcoord.x += 0.25 * SMAA_RT_METRICS.x;
- // The searches are bias by 1, so adjust the coords accordingly:
- // texcoord.x += SMAA_RT_METRICS.x;
- // Disambiguate the length added by the last step:
- // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step
- // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0);
- // return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
- }
- float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) {
- float2 e = float2(0.0, 1.0);
- while (texcoord.x < end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
- }
- float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25);
- return mad(-SMAA_RT_METRICS.x, offset, texcoord.x);
- }
- float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) {
- float2 e = float2(1.0, 0.0);
- while (texcoord.y > end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
- }
- float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25);
- return mad(SMAA_RT_METRICS.y, offset, texcoord.y);
- }
- float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) {
- float2 e = float2(1.0, 0.0);
- while (texcoord.y < end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
- }
- float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25);
- return mad(-SMAA_RT_METRICS.y, offset, texcoord.y);
- }
- /**
- * Ok, we have the distance and both crossing edges. So, what are the areas
- * at each side of current edge?
- */
- float2 SMAAArea(SMAATexture2D_Non_Array(areaTex), float2 dist, float e1, float e2, float offset) {
- // Rounding prevents precision errors of bilinear filtering:
- float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist);
- // We do a scale and bias for mapping to texel space:
- texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
- // Move to proper place, according to the subpixel offset:
- texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
- // Do it!
- return SMAA_AREATEX_SELECT(SMAASampleLevelZeroNoRescale(areaTex, texcoord));
- }
- //-----------------------------------------------------------------------------
- // Corner Detection Functions
- void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) {
- #if !defined(SMAA_DISABLE_CORNER_DETECTION)
- float2 leftRight = step(d.xy, d.yx);
- float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
- rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
- float2 factor = float2(1.0, 1.0);
- factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r;
- factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r;
- factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r;
- factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r;
- weights *= saturate(factor);
- #endif
- }
- void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) {
- #if !defined(SMAA_DISABLE_CORNER_DETECTION)
- float2 leftRight = step(d.xy, d.yx);
- float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
- rounding /= leftRight.x + leftRight.y;
- float2 factor = float2(1.0, 1.0);
- factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(1, 0)).g;
- factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).g;
- factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g;
- factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g;
- weights *= saturate(factor);
- #endif
- }
- //-----------------------------------------------------------------------------
- // Blending Weight Calculation Pixel Shader (Second Pass)
- float4 SMAABlendingWeightCalculationPS(float2 texcoord,
- float2 pixcoord,
- float4 offset[3],
- SMAATexture2D(edgesTex),
- SMAATexture2D_Non_Array(areaTex),
- SMAATexture2D_Non_Array(searchTex),
- float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
- float4 weights = float4(0.0, 0.0, 0.0, 0.0);
- float2 e = SMAASample(edgesTex, texcoord).rg;
- SMAA_BRANCH
- if (e.g > 0.0) { // Edge at north
- #if !defined(SMAA_DISABLE_DIAG_DETECTION)
- // Diagonals have both north and west edges, so searching for them in
- // one of the boundaries is enough.
- weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices);
- // We give priority to diagonals, so if we find a diagonal we skip
- // horizontal/vertical processing.
- SMAA_BRANCH
- if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
- #endif
- float2 d;
- // Find the distance to the left:
- float3 coords;
- coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x);
- coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
- d.x = coords.x;
- // Now fetch the left crossing edges, two at a time using bilinear
- // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
- // discern what value each edge has:
- float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r;
- // Find the distance to the right:
- coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y);
- d.y = coords.z;
- // We want the distances to be in pixel units (doing this here allow to
- // better interleave arithmetic and memory accesses):
- d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx)));
- // SMAAArea below needs a sqrt, as the areas texture is compressed
- // quadratically:
- float2 sqrt_d = sqrt(d);
- // Fetch the right crossing edges:
- float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r;
- // Ok, we know how this pattern looks like, now it is time for getting
- // the actual area:
- weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y);
- // Fix corners:
- coords.y = texcoord.y;
- SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d);
- #if !defined(SMAA_DISABLE_DIAG_DETECTION)
- }
- else
- e.r = 0.0; // Skip vertical processing.
- #endif
- }
- SMAA_BRANCH
- if (e.r > 0.0) { // Edge at west
- float2 d;
- // Find the distance to the top:
- float3 coords;
- coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z);
- coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
- d.x = coords.y;
- // Fetch the top crossing edges:
- float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g;
- // Find the distance to the bottom:
- coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w);
- d.y = coords.z;
- // We want the distances to be in pixel units:
- d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy)));
- // SMAAArea below needs a sqrt, as the areas texture is compressed
- // quadratically:
- float2 sqrt_d = sqrt(d);
- // Fetch the bottom crossing edges:
- float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g;
- // Get the area for this direction:
- weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x);
- // Fix corners:
- coords.x = texcoord.x;
- SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d);
- }
- return weights;
- }
- //-----------------------------------------------------------------------------
- // UV-based reprojection functions
- #if SMAA_UV_BASED_REPROJECTION
- float2 SMAAReproject(float2 texcoord)
- {
- // UV to clip-position:
- // -- This must be sampled at exactly mip 0 due to possible gradient divergence
- // -- as this function is called within a control flow block down below.
- float depth = SMAASampleLevelZero(_CameraDepthTexture, texcoord).r;
- float3 clipPosition = float3(2. * texcoord - 1., depth);
- // Reproject
- float4 previousClipPosition = mul(_ReprojectionMatrix, float4(clipPosition, 1.));
- previousClipPosition.xyz /= previousClipPosition.w;
- // Clip-position to UV
- return (.5 * previousClipPosition.xy + .5);
- }
- #endif
- //-----------------------------------------------------------------------------
- // Neighborhood Blending Pixel Shader (Third Pass)
- float4 SMAANeighborhoodBlendingPS(float2 texcoord,
- float4 offset,
- SMAATexture2D(colorTex),
- SMAATexture2D(blendTex)
- #if SMAA_REPROJECTION
- , SMAATexture2D(velocityTex)
- #endif
- ) {
- // Fetch the blending weights for current pixel:
- float4 a;
- a.x = SMAASample(blendTex, offset.xy).a; // Right
- a.y = SMAASample(blendTex, offset.zw).g; // Top
- a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left
- // Is there any blending weight with a value greater than 0.0?
- SMAA_BRANCH
- if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) {
- float4 color = SMAASampleLevelZero(colorTex, texcoord);
- #if SMAA_REPROJECTION
- float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord));
- #elif SMAA_UV_BASED_REPROJECTION
- float2 velocity = texcoord - SMAAReproject(texcoord);
- #endif
- #if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION)
- // Pack velocity into the alpha channel:
- color.a = sqrt(5.0 * length(velocity));
- #endif
- return color;
- }
- else {
- bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical)
- // Calculate the blending offsets:
- float4 blendingOffset = float4(0.0, a.y, 0.0, a.w);
- float2 blendingWeight = a.yw;
- SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0));
- SMAAMovc(bool2(h, h), blendingWeight, a.xz);
- blendingWeight /= dot(blendingWeight, float2(1.0, 1.0));
- // Calculate the texture coordinates:
- float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy);
- // We exploit bilinear filtering to mix current pixel with the chosen
- // neighbor:
- float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy);
- color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw);
- #if SMAA_REPROJECTION
- // Antialias velocity for proper reprojection in a later stage:
- float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy));
- velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw));
- #elif SMAA_UV_BASED_REPROJECTION
- // Antialias velocity for proper reprojection in a later stage:
- float2 velocity = blendingWeight.x * (blendingCoord.xy - SMAAReproject(blendingCoord.xy));
- velocity += blendingWeight.y * (blendingCoord.zw - SMAAReproject(blendingCoord.zw));
- #endif
- #if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION)
- // Pack velocity into the alpha channel:
- color.a = sqrt(5.0 * length(velocity));
- #endif
- return color;
- }
- }
- //-----------------------------------------------------------------------------
- // Temporal Resolve Pixel Shader (Optional Pass)
- float4 SMAAResolvePS(float2 texcoord,
- SMAATexture2D(currentColorTex),
- SMAATexture2D(previousColorTex)
- #if SMAA_REPROJECTION
- , SMAATexture2D(velocityTex)
- #endif
- ) {
- #if SMAA_REPROJECTION
- // Velocity is assumed to be calculated for motion blur, so we need to
- // inverse it for reprojection:
- float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg);
- #elif SMAA_UV_BASED_REPROJECTION
- float2 velocity = SMAAReproject(texcoord) - texcoord;
- #endif
- #if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION)
- // Fetch current pixel:
- float4 current = SMAASamplePoint(currentColorTex, texcoord);
- // Reproject current coordinates and fetch previous pixel:
- float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity);
- // Attenuate the previous pixel if the velocity is different:
- float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0;
- float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE);
- // Blend the pixels according to the calculated weight:
- // return lerp(current, previous, weight);
- // Neighbour clamp
- // Contributed by pommak
- float4 n0 = SMAASampleOffset(currentColorTex, texcoord, float2(-1, -1));
- float4 n1 = SMAASampleOffset(currentColorTex, texcoord, float2(+1, -1));
- float4 n2 = SMAASampleOffset(currentColorTex, texcoord, float2(-1, +1));
- float4 n3 = SMAASampleOffset(currentColorTex, texcoord, float2(+1, +1));
- float4 cmax = max(n0, max(n1, max(n2, n3)));
- float4 cmin = min(n0, min(n1, min(n2, n3)));
- float4 avg = 0.25 * (n0 + n1 + n2 + n3);
- float4 wk = abs(avg - current);
- float blend = saturate(lerp(0.35, 0.85, wk));
- // Clamp previous to neighbours colors
- float4 previousClamped = clamp(previous, cmin, cmax);
- float4 color = lerp(lerp(current, previousClamped, 0.5*weight), previousClamped, weight);
- return color;
- #else
- // Just blend the pixels:
- float4 current = SMAASamplePoint(currentColorTex, texcoord);
- float4 previous = SMAASamplePoint(previousColorTex, texcoord);
- return lerp(current, previous, 0.5);
- #endif
- }
- //-----------------------------------------------------------------------------
- // Separate Multisamples Pixel Shader (Optional Pass)
- #ifdef SMAALoad
- void SMAASeparatePS(float4 position,
- float2 texcoord,
- out float4 target0,
- out float4 target1,
- SMAATexture2DMS2(colorTexMS)) {
- int2 pos = int2(position.xy);
- target0 = SMAALoad(colorTexMS, pos, 0);
- target1 = SMAALoad(colorTexMS, pos, 1);
- }
- #endif
- //-----------------------------------------------------------------------------
- #endif // SMAA_INCLUDE_PS
|