123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640 |
- #ifndef UNIVERSAL_LIGHTING_INCLUDED
- #define UNIVERSAL_LIGHTING_INCLUDED
- #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl"
- #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/EntityLighting.hlsl"
- #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/ImageBasedLighting.hlsl"
- #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
- #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl"
- // If lightmap is not defined than we evaluate GI (ambient + probes) from SH
- // We might do it fully or partially in vertex to save shader ALU
- #if !defined(LIGHTMAP_ON)
- // TODO: Controls things like these by exposing SHADER_QUALITY levels (low, medium, high)
- #if defined(SHADER_API_GLES) || !defined(_NORMALMAP)
- // Evaluates SH fully in vertex
- #define EVALUATE_SH_VERTEX
- #elif !SHADER_HINT_NICE_QUALITY
- // Evaluates L2 SH in vertex and L0L1 in pixel
- #define EVALUATE_SH_MIXED
- #endif
- // Otherwise evaluate SH fully per-pixel
- #endif
- #ifdef LIGHTMAP_ON
- #define DECLARE_LIGHTMAP_OR_SH(lmName, shName, index) float2 lmName : TEXCOORD##index
- #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) OUT.xy = lightmapUV.xy * lightmapScaleOffset.xy + lightmapScaleOffset.zw;
- #define OUTPUT_SH(normalWS, OUT)
- #else
- #define DECLARE_LIGHTMAP_OR_SH(lmName, shName, index) half3 shName : TEXCOORD##index
- #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT)
- #define OUTPUT_SH(normalWS, OUT) OUT.xyz = SampleSHVertex(normalWS)
- #endif
- ///////////////////////////////////////////////////////////////////////////////
- // Light Helpers //
- ///////////////////////////////////////////////////////////////////////////////
- // Abstraction over Light shading data.
- struct Light
- {
- half3 direction;
- half3 color;
- half distanceAttenuation;
- half shadowAttenuation;
- };
- ///////////////////////////////////////////////////////////////////////////////
- // Attenuation Functions /
- ///////////////////////////////////////////////////////////////////////////////
- // Matches Unity Vanila attenuation
- // Attenuation smoothly decreases to light range.
- float DistanceAttenuation(float distanceSqr, half2 distanceAttenuation)
- {
- // We use a shared distance attenuation for additional directional and puctual lights
- // for directional lights attenuation will be 1
- float lightAtten = rcp(distanceSqr);
- #if SHADER_HINT_NICE_QUALITY
- // Use the smoothing factor also used in the Unity lightmapper.
- half factor = distanceSqr * distanceAttenuation.x;
- half smoothFactor = saturate(1.0h - factor * factor);
- smoothFactor = smoothFactor * smoothFactor;
- #else
- // We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range
- // Therefore:
- // fadeDistance = (0.8 * 0.8 * lightRangeSq)
- // smoothFactor = (lightRangeSqr - distanceSqr) / (lightRangeSqr - fadeDistance)
- // We can rewrite that to fit a MAD by doing
- // distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr)
- // distanceSqr * distanceAttenuation.y + distanceAttenuation.z
- half smoothFactor = saturate(distanceSqr * distanceAttenuation.x + distanceAttenuation.y);
- #endif
- return lightAtten * smoothFactor;
- }
- half AngleAttenuation(half3 spotDirection, half3 lightDirection, half2 spotAttenuation)
- {
- // Spot Attenuation with a linear falloff can be defined as
- // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
- // This can be rewritten as
- // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
- // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
- // SdotL * spotAttenuation.x + spotAttenuation.y
- // If we precompute the terms in a MAD instruction
- half SdotL = dot(spotDirection, lightDirection);
- half atten = saturate(SdotL * spotAttenuation.x + spotAttenuation.y);
- return atten * atten;
- }
- ///////////////////////////////////////////////////////////////////////////////
- // Light Abstraction //
- ///////////////////////////////////////////////////////////////////////////////
- Light GetMainLight()
- {
- Light light;
- light.direction = _MainLightPosition.xyz;
- // unity_LightData.z is 1 when not culled by the culling mask, otherwise 0.
- light.distanceAttenuation = unity_LightData.z;
- #if defined(LIGHTMAP_ON) || defined(_MIXED_LIGHTING_SUBTRACTIVE)
- // unity_ProbesOcclusion.x is the mixed light probe occlusion data
- light.distanceAttenuation *= unity_ProbesOcclusion.x;
- #endif
- light.shadowAttenuation = 1.0;
- light.color = _MainLightColor.rgb;
- return light;
- }
- Light GetMainLight(float4 shadowCoord)
- {
- Light light = GetMainLight();
- light.shadowAttenuation = MainLightRealtimeShadow(shadowCoord);
- return light;
- }
- // Fills a light struct given a perObjectLightIndex
- Light GetAdditionalPerObjectLight(int perObjectLightIndex, float3 positionWS)
- {
- // Abstraction over Light input constants
- #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA
- float4 lightPositionWS = _AdditionalLightsBuffer[perObjectLightIndex].position;
- half3 color = _AdditionalLightsBuffer[perObjectLightIndex].color.rgb;
- half4 distanceAndSpotAttenuation = _AdditionalLightsBuffer[perObjectLightIndex].attenuation;
- half4 spotDirection = _AdditionalLightsBuffer[perObjectLightIndex].spotDirection;
- half4 lightOcclusionProbeInfo = _AdditionalLightsBuffer[perObjectLightIndex].occlusionProbeChannels;
- #else
- float4 lightPositionWS = _AdditionalLightsPosition[perObjectLightIndex];
- half3 color = _AdditionalLightsColor[perObjectLightIndex].rgb;
- half4 distanceAndSpotAttenuation = _AdditionalLightsAttenuation[perObjectLightIndex];
- half4 spotDirection = _AdditionalLightsSpotDir[perObjectLightIndex];
- half4 lightOcclusionProbeInfo = _AdditionalLightsOcclusionProbes[perObjectLightIndex];
- #endif
- // Directional lights store direction in lightPosition.xyz and have .w set to 0.0.
- // This way the following code will work for both directional and punctual lights.
- float3 lightVector = lightPositionWS.xyz - positionWS * lightPositionWS.w;
- float distanceSqr = max(dot(lightVector, lightVector), HALF_MIN);
- half3 lightDirection = half3(lightVector * rsqrt(distanceSqr));
- half attenuation = DistanceAttenuation(distanceSqr, distanceAndSpotAttenuation.xy) * AngleAttenuation(spotDirection.xyz, lightDirection, distanceAndSpotAttenuation.zw);
- Light light;
- light.direction = lightDirection;
- light.distanceAttenuation = attenuation;
- light.shadowAttenuation = AdditionalLightRealtimeShadow(perObjectLightIndex, positionWS);
- light.color = color;
- // In case we're using light probes, we can sample the attenuation from the `unity_ProbesOcclusion`
- #if defined(LIGHTMAP_ON) || defined(_MIXED_LIGHTING_SUBTRACTIVE)
- // First find the probe channel from the light.
- // Then sample `unity_ProbesOcclusion` for the baked occlusion.
- // If the light is not baked, the channel is -1, and we need to apply no occlusion.
- // probeChannel is the index in 'unity_ProbesOcclusion' that holds the proper occlusion value.
- int probeChannel = lightOcclusionProbeInfo.x;
- // lightProbeContribution is set to 0 if we are indeed using a probe, otherwise set to 1.
- half lightProbeContribution = lightOcclusionProbeInfo.y;
- half probeOcclusionValue = unity_ProbesOcclusion[probeChannel];
- light.distanceAttenuation *= max(probeOcclusionValue, lightProbeContribution);
- #endif
- return light;
- }
- uint GetPerObjectLightIndexOffset()
- {
- #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA
- return unity_LightData.x;
- #else
- return 0;
- #endif
- }
- // Returns a per-object index given a loop index.
- // This abstract the underlying data implementation for storing lights/light indices
- int GetPerObjectLightIndex(uint index)
- {
- /////////////////////////////////////////////////////////////////////////////////////////////
- // Structured Buffer Path /
- // /
- // Lights and light indices are stored in StructuredBuffer. We can just index them. /
- // Currently all non-mobile platforms take this path :( /
- // There are limitation in mobile GPUs to use SSBO (performance / no vertex shader support) /
- /////////////////////////////////////////////////////////////////////////////////////////////
- #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA
- uint offset = unity_LightData.x;
- return _AdditionalLightsIndices[offset + index];
- /////////////////////////////////////////////////////////////////////////////////////////////
- // UBO path /
- // /
- // We store 8 light indices in float4 unity_LightIndices[2]; /
- // Due to memory alignment unity doesn't support int[] or float[] /
- // Even trying to reinterpret cast the unity_LightIndices to float[] won't work /
- // it will cast to float4[] and create extra register pressure. :( /
- /////////////////////////////////////////////////////////////////////////////////////////////
- #elif !defined(SHADER_API_GLES)
- // since index is uint shader compiler will implement
- // div & mod as bitfield ops (shift and mask).
-
- // TODO: Can we index a float4? Currently compiler is
- // replacing unity_LightIndicesX[i] with a dp4 with identity matrix.
- // u_xlat16_40 = dot(unity_LightIndices[int(u_xlatu13)], ImmCB_0_0_0[u_xlati1]);
- // This increases both arithmetic and register pressure.
- return unity_LightIndices[index / 4][index % 4];
- #else
- // Fallback to GLES2. No bitfield magic here :(.
- // We limit to 4 indices per object and only sample unity_4LightIndices0.
- // Conditional moves are branch free even on mali-400
- // small arithmetic cost but no extra register pressure from ImmCB_0_0_0 matrix.
- half2 lightIndex2 = (index < 2.0h) ? unity_LightIndices[0].xy : unity_LightIndices[0].zw;
- half i_rem = (index < 2.0h) ? index : index - 2.0h;
- return (i_rem < 1.0h) ? lightIndex2.x : lightIndex2.y;
- #endif
- }
- // Fills a light struct given a loop i index. This will convert the i
- // index to a perObjectLightIndex
- Light GetAdditionalLight(uint i, float3 positionWS)
- {
- int perObjectLightIndex = GetPerObjectLightIndex(i);
- return GetAdditionalPerObjectLight(perObjectLightIndex, positionWS);
- }
- int GetAdditionalLightsCount()
- {
- // TODO: we need to expose in SRP api an ability for the pipeline cap the amount of lights
- // in the culling. This way we could do the loop branch with an uniform
- // This would be helpful to support baking exceeding lights in SH as well
- return min(_AdditionalLightsCount.x, unity_LightData.y);
- }
- ///////////////////////////////////////////////////////////////////////////////
- // BRDF Functions //
- ///////////////////////////////////////////////////////////////////////////////
- #define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%)
- struct BRDFData
- {
- half3 diffuse;
- half3 specular;
- half perceptualRoughness;
- half roughness;
- half roughness2;
- half grazingTerm;
- // We save some light invariant BRDF terms so we don't have to recompute
- // them in the light loop. Take a look at DirectBRDF function for detailed explaination.
- half normalizationTerm; // roughness * 4.0 + 2.0
- half roughness2MinusOne; // roughness^2 - 1.0
- };
- half ReflectivitySpecular(half3 specular)
- {
- #if defined(SHADER_API_GLES)
- return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint
- #else
- return max(max(specular.r, specular.g), specular.b);
- #endif
- }
- half OneMinusReflectivityMetallic(half metallic)
- {
- // We'll need oneMinusReflectivity, so
- // 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic)
- // store (1-dielectricSpec) in kDieletricSpec.a, then
- // 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) =
- // = alpha - metallic * alpha
- half oneMinusDielectricSpec = kDieletricSpec.a;
- return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec;
- }
- inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData)
- {
- #ifdef _SPECULAR_SETUP
- half reflectivity = ReflectivitySpecular(specular);
- half oneMinusReflectivity = 1.0 - reflectivity;
- outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular);
- outBRDFData.specular = specular;
- #else
- half oneMinusReflectivity = OneMinusReflectivityMetallic(metallic);
- half reflectivity = 1.0 - oneMinusReflectivity;
- outBRDFData.diffuse = albedo * oneMinusReflectivity;
- outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic);
- #endif
- outBRDFData.grazingTerm = saturate(smoothness + reflectivity);
- outBRDFData.perceptualRoughness = PerceptualSmoothnessToPerceptualRoughness(smoothness);
- outBRDFData.roughness = max(PerceptualRoughnessToRoughness(outBRDFData.perceptualRoughness), HALF_MIN);
- outBRDFData.roughness2 = outBRDFData.roughness * outBRDFData.roughness;
- outBRDFData.normalizationTerm = outBRDFData.roughness * 4.0h + 2.0h;
- outBRDFData.roughness2MinusOne = outBRDFData.roughness2 - 1.0h;
- #ifdef _ALPHAPREMULTIPLY_ON
- outBRDFData.diffuse *= alpha;
- alpha = alpha * oneMinusReflectivity + reflectivity;
- #endif
- }
- half3 EnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half fresnelTerm)
- {
- half3 c = indirectDiffuse * brdfData.diffuse;
- float surfaceReduction = 1.0 / (brdfData.roughness2 + 1.0);
- c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm);
- return c;
- }
- // Based on Minimalist CookTorrance BRDF
- // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255
- //
- // * NDF [Modified] GGX
- // * Modified Kelemen and Szirmay-Kalos for Visibility term
- // * Fresnel approximated with 1/LdotH
- half3 DirectBDRF(BRDFData brdfData, half3 normalWS, half3 lightDirectionWS, half3 viewDirectionWS)
- {
- #ifndef _SPECULARHIGHLIGHTS_OFF
- float3 halfDir = SafeNormalize(float3(lightDirectionWS) + float3(viewDirectionWS));
- float NoH = saturate(dot(normalWS, halfDir));
- half LoH = saturate(dot(lightDirectionWS, halfDir));
- // GGX Distribution multiplied by combined approximation of Visibility and Fresnel
- // BRDFspec = (D * V * F) / 4.0
- // D = roughness^2 / ( NoH^2 * (roughness^2 - 1) + 1 )^2
- // V * F = 1.0 / ( LoH^2 * (roughness + 0.5) )
- // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course
- // https://community.arm.com/events/1155
- // Final BRDFspec = roughness^2 / ( NoH^2 * (roughness^2 - 1) + 1 )^2 * (LoH^2 * (roughness + 0.5) * 4.0)
- // We further optimize a few light invariant terms
- // brdfData.normalizationTerm = (roughness + 0.5) * 4.0 rewritten as roughness * 4.0 + 2.0 to a fit a MAD.
- float d = NoH * NoH * brdfData.roughness2MinusOne + 1.00001f;
- half LoH2 = LoH * LoH;
- half specularTerm = brdfData.roughness2 / ((d * d) * max(0.1h, LoH2) * brdfData.normalizationTerm);
- // On platforms where half actually means something, the denominator has a risk of overflow
- // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles)
- // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...))
- #if defined (SHADER_API_MOBILE) || defined (SHADER_API_SWITCH)
- specularTerm = specularTerm - HALF_MIN;
- specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles
- #endif
- half3 color = specularTerm * brdfData.specular + brdfData.diffuse;
- return color;
- #else
- return brdfData.diffuse;
- #endif
- }
- ///////////////////////////////////////////////////////////////////////////////
- // Global Illumination //
- ///////////////////////////////////////////////////////////////////////////////
- // Samples SH L0, L1 and L2 terms
- half3 SampleSH(half3 normalWS)
- {
- // LPPV is not supported in Ligthweight Pipeline
- real4 SHCoefficients[7];
- SHCoefficients[0] = unity_SHAr;
- SHCoefficients[1] = unity_SHAg;
- SHCoefficients[2] = unity_SHAb;
- SHCoefficients[3] = unity_SHBr;
- SHCoefficients[4] = unity_SHBg;
- SHCoefficients[5] = unity_SHBb;
- SHCoefficients[6] = unity_SHC;
- return max(half3(0, 0, 0), SampleSH9(SHCoefficients, normalWS));
- }
- // SH Vertex Evaluation. Depending on target SH sampling might be
- // done completely per vertex or mixed with L2 term per vertex and L0, L1
- // per pixel. See SampleSHPixel
- half3 SampleSHVertex(half3 normalWS)
- {
- #if defined(EVALUATE_SH_VERTEX)
- return max(half3(0, 0, 0), SampleSH(normalWS));
- #elif defined(EVALUATE_SH_MIXED)
- // no max since this is only L2 contribution
- return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC);
- #endif
- // Fully per-pixel. Nothing to compute.
- return half3(0.0, 0.0, 0.0);
- }
- // SH Pixel Evaluation. Depending on target SH sampling might be done
- // mixed or fully in pixel. See SampleSHVertex
- half3 SampleSHPixel(half3 L2Term, half3 normalWS)
- {
- #if defined(EVALUATE_SH_VERTEX)
- return L2Term;
- #elif defined(EVALUATE_SH_MIXED)
- half3 L0L1Term = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb);
- return max(half3(0, 0, 0), L2Term + L0L1Term);
- #endif
- // Default: Evaluate SH fully per-pixel
- return SampleSH(normalWS);
- }
- // Sample baked lightmap. Non-Direction and Directional if available.
- // Realtime GI is not supported.
- half3 SampleLightmap(float2 lightmapUV, half3 normalWS)
- {
- #ifdef UNITY_LIGHTMAP_FULL_HDR
- bool encodedLightmap = false;
- #else
- bool encodedLightmap = true;
- #endif
- half4 decodeInstructions = half4(LIGHTMAP_HDR_MULTIPLIER, LIGHTMAP_HDR_EXPONENT, 0.0h, 0.0h);
- // The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale.
- // However, universal pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and
- // the compiler will optimize the transform away.
- half4 transformCoords = half4(1, 1, 0, 0);
- #ifdef DIRLIGHTMAP_COMBINED
- return SampleDirectionalLightmap(TEXTURE2D_ARGS(unity_Lightmap, samplerunity_Lightmap),
- TEXTURE2D_ARGS(unity_LightmapInd, samplerunity_Lightmap),
- lightmapUV, transformCoords, normalWS, encodedLightmap, decodeInstructions);
- #elif defined(LIGHTMAP_ON)
- return SampleSingleLightmap(TEXTURE2D_ARGS(unity_Lightmap, samplerunity_Lightmap), lightmapUV, transformCoords, encodedLightmap, decodeInstructions);
- #else
- return half3(0.0, 0.0, 0.0);
- #endif
- }
- // We either sample GI from baked lightmap or from probes.
- // If lightmap: sampleData.xy = lightmapUV
- // If probe: sampleData.xyz = L2 SH terms
- #ifdef LIGHTMAP_ON
- #define SAMPLE_GI(lmName, shName, normalWSName) SampleLightmap(lmName, normalWSName)
- #else
- #define SAMPLE_GI(lmName, shName, normalWSName) SampleSHPixel(shName, normalWSName)
- #endif
- half3 GlossyEnvironmentReflection(half3 reflectVector, half perceptualRoughness, half occlusion)
- {
- #if !defined(_ENVIRONMENTREFLECTIONS_OFF)
- half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
- half4 encodedIrradiance = SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip);
- #if !defined(UNITY_USE_NATIVE_HDR)
- half3 irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
- #else
- half3 irradiance = encodedIrradiance.rbg;
- #endif
- return irradiance * occlusion;
- #endif // GLOSSY_REFLECTIONS
- return _GlossyEnvironmentColor.rgb * occlusion;
- }
- half3 SubtractDirectMainLightFromLightmap(Light mainLight, half3 normalWS, half3 bakedGI)
- {
- // Let's try to make realtime shadows work on a surface, which already contains
- // baked lighting and shadowing from the main sun light.
- // Summary:
- // 1) Calculate possible value in the shadow by subtracting estimated light contribution from the places occluded by realtime shadow:
- // a) preserves other baked lights and light bounces
- // b) eliminates shadows on the geometry facing away from the light
- // 2) Clamp against user defined ShadowColor.
- // 3) Pick original lightmap value, if it is the darkest one.
- // 1) Gives good estimate of illumination as if light would've been shadowed during the bake.
- // We only subtract the main direction light. This is accounted in the contribution term below.
- half shadowStrength = GetMainLightShadowStrength();
- half contributionTerm = saturate(dot(mainLight.direction, normalWS));
- half3 lambert = mainLight.color * contributionTerm;
- half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.shadowAttenuation);
- half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow;
- // 2) Allows user to define overall ambient of the scene and control situation when realtime shadow becomes too dark.
- half3 realtimeShadow = max(subtractedLightmap, _SubtractiveShadowColor.xyz);
- realtimeShadow = lerp(bakedGI, realtimeShadow, shadowStrength);
- // 3) Pick darkest color
- return min(bakedGI, realtimeShadow);
- }
- half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, half3 normalWS, half3 viewDirectionWS)
- {
- half3 reflectVector = reflect(-viewDirectionWS, normalWS);
- half fresnelTerm = Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS)));
- half3 indirectDiffuse = bakedGI * occlusion;
- half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfData.perceptualRoughness, occlusion);
- return EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm);
- }
- void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, half4 shadowMask)
- {
- #if defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_ON)
- bakedGI = SubtractDirectMainLightFromLightmap(light, normalWS, bakedGI);
- #endif
- }
- ///////////////////////////////////////////////////////////////////////////////
- // Lighting Functions //
- ///////////////////////////////////////////////////////////////////////////////
- half3 LightingLambert(half3 lightColor, half3 lightDir, half3 normal)
- {
- half NdotL = saturate(dot(normal, lightDir));
- return lightColor * NdotL;
- }
- half3 LightingSpecular(half3 lightColor, half3 lightDir, half3 normal, half3 viewDir, half4 specular, half smoothness)
- {
- float3 halfVec = SafeNormalize(float3(lightDir) + float3(viewDir));
- half NdotH = saturate(dot(normal, halfVec));
- half modifier = pow(NdotH, smoothness);
- half3 specularReflection = specular.rgb * modifier;
- return lightColor * specularReflection;
- }
- half3 LightingPhysicallyBased(BRDFData brdfData, half3 lightColor, half3 lightDirectionWS, half lightAttenuation, half3 normalWS, half3 viewDirectionWS)
- {
- half NdotL = saturate(dot(normalWS, lightDirectionWS));
- half3 radiance = lightColor * (lightAttenuation * NdotL);
- return DirectBDRF(brdfData, normalWS, lightDirectionWS, viewDirectionWS) * radiance;
- }
- half3 LightingPhysicallyBased(BRDFData brdfData, Light light, half3 normalWS, half3 viewDirectionWS)
- {
- return LightingPhysicallyBased(brdfData, light.color, light.direction, light.distanceAttenuation * light.shadowAttenuation, normalWS, viewDirectionWS);
- }
- half3 VertexLighting(float3 positionWS, half3 normalWS)
- {
- half3 vertexLightColor = half3(0.0, 0.0, 0.0);
- #ifdef _ADDITIONAL_LIGHTS_VERTEX
- uint lightsCount = GetAdditionalLightsCount();
- for (uint lightIndex = 0u; lightIndex < lightsCount; ++lightIndex)
- {
- Light light = GetAdditionalLight(lightIndex, positionWS);
- half3 lightColor = light.color * light.distanceAttenuation;
- vertexLightColor += LightingLambert(lightColor, light.direction, normalWS);
- }
- #endif
- return vertexLightColor;
- }
- ///////////////////////////////////////////////////////////////////////////////
- // Fragment Functions //
- // Used by ShaderGraph and others builtin renderers //
- ///////////////////////////////////////////////////////////////////////////////
- half4 UniversalFragmentPBR(InputData inputData, half3 albedo, half metallic, half3 specular,
- half smoothness, half occlusion, half3 emission, half alpha)
- {
- BRDFData brdfData;
- InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData);
-
- Light mainLight = GetMainLight(inputData.shadowCoord);
- MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0));
- half3 color = GlobalIllumination(brdfData, inputData.bakedGI, occlusion, inputData.normalWS, inputData.viewDirectionWS);
- color += LightingPhysicallyBased(brdfData, mainLight, inputData.normalWS, inputData.viewDirectionWS);
- #ifdef _ADDITIONAL_LIGHTS
- uint pixelLightCount = GetAdditionalLightsCount();
- for (uint lightIndex = 0u; lightIndex < pixelLightCount; ++lightIndex)
- {
- Light light = GetAdditionalLight(lightIndex, inputData.positionWS);
- color += LightingPhysicallyBased(brdfData, light, inputData.normalWS, inputData.viewDirectionWS);
- }
- #endif
- #ifdef _ADDITIONAL_LIGHTS_VERTEX
- color += inputData.vertexLighting * brdfData.diffuse;
- #endif
- color += emission;
- return half4(color, alpha);
- }
- half4 UniversalFragmentBlinnPhong(InputData inputData, half3 diffuse, half4 specularGloss, half smoothness, half3 emission, half alpha)
- {
- Light mainLight = GetMainLight(inputData.shadowCoord);
- MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0));
- half3 attenuatedLightColor = mainLight.color * (mainLight.distanceAttenuation * mainLight.shadowAttenuation);
- half3 diffuseColor = inputData.bakedGI + LightingLambert(attenuatedLightColor, mainLight.direction, inputData.normalWS);
- half3 specularColor = LightingSpecular(attenuatedLightColor, mainLight.direction, inputData.normalWS, inputData.viewDirectionWS, specularGloss, smoothness);
- #ifdef _ADDITIONAL_LIGHTS
- uint pixelLightCount = GetAdditionalLightsCount();
- for (uint lightIndex = 0u; lightIndex < pixelLightCount; ++lightIndex)
- {
- Light light = GetAdditionalLight(lightIndex, inputData.positionWS);
- half3 attenuatedLightColor = light.color * (light.distanceAttenuation * light.shadowAttenuation);
- diffuseColor += LightingLambert(attenuatedLightColor, light.direction, inputData.normalWS);
- specularColor += LightingSpecular(attenuatedLightColor, light.direction, inputData.normalWS, inputData.viewDirectionWS, specularGloss, smoothness);
- }
- #endif
- #ifdef _ADDITIONAL_LIGHTS_VERTEX
- diffuseColor += inputData.vertexLighting;
- #endif
- half3 finalColor = diffuseColor * diffuse + emission;
- #if defined(_SPECGLOSSMAP) || defined(_SPECULAR_COLOR)
- finalColor += specularColor;
- #endif
- return half4(finalColor, alpha);
- }
- //LWRP -> Universal Backwards Compatibility
- half4 LightweightFragmentPBR(InputData inputData, half3 albedo, half metallic, half3 specular,
- half smoothness, half occlusion, half3 emission, half alpha)
- {
- return UniversalFragmentPBR(inputData, albedo, metallic, specular, smoothness, occlusion, emission, alpha);
- }
- half4 LightweightFragmentBlinnPhong(InputData inputData, half3 diffuse, half4 specularGloss, half smoothness, half3 emission, half alpha)
- {
- return UniversalFragmentBlinnPhong(inputData, diffuse, specularGloss, smoothness, emission, alpha);
- }
- #endif
|