FbxMatrixTest.cs 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. // ***********************************************************************
  2. // Copyright (c) 2017 Unity Technologies. All rights reserved.
  3. //
  4. // Licensed under the ##LICENSENAME##.
  5. // See LICENSE.md file in the project root for full license information.
  6. // ***********************************************************************
  7. using NUnit.Framework;
  8. using Autodesk.Fbx;
  9. namespace Autodesk.Fbx.UnitTests
  10. {
  11. public class FbxMatrixTest : FbxDouble4x4TestBase<FbxMatrix>
  12. {
  13. public static bool AssertIsIdentity(FbxMatrix mx,
  14. double tolerance = 1e-10, bool nothrow = false)
  15. {
  16. using (var id = new FbxMatrix()) {
  17. return AssertSimilar(id, mx, tolerance, nothrow);
  18. }
  19. }
  20. public static bool AssertSimilar(FbxMatrix expected, FbxMatrix actual,
  21. double tolerance = 1e-10, bool nothrow = false)
  22. {
  23. for(int y = 0; y < 4; ++y) {
  24. for(int x = 0; x < 4; ++x) {
  25. if (System.Math.Abs(expected.Get(x, y) - actual.Get(x, y)) >= tolerance) {
  26. if (!nothrow) {
  27. Assert.AreEqual(expected, actual, string.Format("Index {0} {1}", x, y));
  28. }
  29. return false;
  30. }
  31. }
  32. }
  33. return true;
  34. }
  35. [Test]
  36. public void TestEquality()
  37. {
  38. var zero = new FbxVector4();
  39. var one = new FbxVector4(1,1,1);
  40. var mx1 = new FbxMatrix(zero, zero, one);
  41. var mx2 = new FbxMatrix(one, zero, one);
  42. // Check that equality is value equality, not reference equality.
  43. var mx1copy = new FbxMatrix(zero, zero, one);
  44. EqualityTester<FbxMatrix>.TestEquality(mx1, mx2, mx1copy);
  45. // Check that we can compare with an affine matrix.
  46. mx1 = new FbxMatrix(new FbxVector4(1, 2, 3), new FbxVector4(0, -90, 0), one);
  47. var affine = new FbxAMatrix(new FbxVector4(1, 2, 3), new FbxVector4(0, -90, 0), one);
  48. Assert.IsTrue(mx1 == affine);
  49. }
  50. [Test]
  51. public void BasicTests ()
  52. {
  53. base.TestElementAccessAndDispose(new FbxMatrix());
  54. FbxMatrix mx;
  55. // make sure the constructors compile and don't crash
  56. mx = new FbxMatrix();
  57. mx = new FbxMatrix(new FbxMatrix());
  58. mx = new FbxMatrix(new FbxAMatrix());
  59. mx = new FbxMatrix(new FbxVector4(), new FbxVector4(), new FbxVector4(1,1,1));
  60. mx = new FbxMatrix(new FbxVector4(), new FbxQuaternion(), new FbxVector4(1,1,1));
  61. mx = new FbxMatrix(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  62. /* Check the values we typed in match up. */
  63. for(int y = 0; y < 4; ++y) {
  64. for(int x = 0; x < 4; ++x) {
  65. Assert.AreEqual(x + 4 * y, mx.Get(y, x));
  66. }
  67. }
  68. Assert.AreEqual(new FbxVector4(4, 5, 6, 7), mx.GetRow(1));
  69. Assert.AreEqual(new FbxVector4(1, 5, 9, 13), mx.GetColumn(1));
  70. /* Check that set and get work (silly transpose operation). */
  71. FbxMatrix mx2 = new FbxMatrix();
  72. for(int y = 0; y < 4; ++y) {
  73. for(int x = 0; x < 4; ++x) {
  74. mx2.Set(y, x, y + 4 * x);
  75. Assert.AreEqual(mx.Get(x, y), mx2.Get(y, x));
  76. }
  77. }
  78. /* normal transpose operation */
  79. Assert.AreEqual(mx, mx2.Transpose());
  80. // Test SetIdentity
  81. Assert.IsFalse(AssertIsIdentity(mx, nothrow: true));
  82. AssertIsIdentity(mx, 15); // squint very, very, very hard
  83. mx.SetIdentity();
  84. AssertIsIdentity(mx);
  85. // Test getting the elements from a matrix built by TRS
  86. var translate = new FbxVector4(1, 2, 3);
  87. var rotate = new FbxVector4(0, 90, 0);
  88. var scale = new FbxVector4(1, 2, .5);
  89. mx = new FbxMatrix(translate, rotate, scale);
  90. FbxVector4 t,r,s, shear;
  91. double sign;
  92. mx.GetElements(out t, out r, out shear, out s, out sign);
  93. Assert.AreEqual(1, sign);
  94. FbxVector4Test.AssertSimilarXYZ(translate, t);
  95. FbxVector4Test.AssertSimilarEuler(rotate, r);
  96. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(), shear);
  97. FbxVector4Test.AssertSimilarXYZ(scale, s);
  98. FbxQuaternion q = new FbxQuaternion();
  99. mx.GetElements(out r, q, out shear, out s, out sign);
  100. Assert.AreEqual(1, sign);
  101. FbxVector4Test.AssertSimilarXYZ(translate, t);
  102. FbxQuaternionTest.AssertSimilar(rotate, q);
  103. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(), shear);
  104. FbxVector4Test.AssertSimilarXYZ(scale, s);
  105. // Try SetTRS and SetTQS with the same arguments.
  106. using (var X = new FbxMatrix()) {
  107. X.SetTRS(translate, rotate, scale);
  108. X.GetElements(out r, q, out shear, out s, out sign);
  109. Assert.AreEqual(1, sign);
  110. FbxVector4Test.AssertSimilarXYZ(translate, t);
  111. FbxQuaternionTest.AssertSimilar(rotate, q);
  112. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(), shear);
  113. FbxVector4Test.AssertSimilarXYZ(scale, s);
  114. }
  115. using (var X = new FbxMatrix()) {
  116. FbxQuaternion qRotate = new FbxQuaternion();
  117. qRotate.ComposeSphericalXYZ(rotate);
  118. X.SetTQS(translate, q, scale);
  119. X.GetElements(out r, q, out shear, out s, out sign);
  120. Assert.AreEqual(1, sign);
  121. FbxVector4Test.AssertSimilarXYZ(translate, t);
  122. FbxQuaternionTest.AssertSimilar(rotate, q);
  123. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(), shear);
  124. FbxVector4Test.AssertSimilarXYZ(scale, s);
  125. // While we're at it, transform a vertex.
  126. // Verify also that w turns out normalized.
  127. var v = new FbxVector4(1, 2, 3, 4);
  128. var v2 = X.MultNormalize(v);
  129. FbxVector4Test.AssertSimilarXYZW(new FbxVector4(2.5,6,2,1), v2);
  130. // While we're at it, test that we can invert the matrix.
  131. // This matrix is invertible (since it's an affine transformation),
  132. // and the inversion turns out to be exact.
  133. AssertIsIdentity(X.Inverse() * X);
  134. using (var inv = new FbxMatrix(
  135. 0, 0, 2, 0,
  136. 0, 0.5, 0, 0,
  137. -1, 0, 0, 0,
  138. 3, -1, -2, 1)) {
  139. Assert.AreEqual(inv, X.Inverse());
  140. }
  141. }
  142. // Test set column + set row
  143. mx = new FbxMatrix();
  144. mx.SetColumn (1, new FbxVector4 (1, 2, 3, 4));
  145. mx.SetRow (2, new FbxVector4 (5, 6, 7, 8));
  146. //check that the column is what we expect
  147. Assert.AreEqual (1, mx.Get (0, 1));
  148. Assert.AreEqual (2, mx.Get (1, 1));
  149. Assert.AreEqual (6, mx.Get (2, 1)); // this value got changed by SetRow
  150. Assert.AreEqual (4, mx.Get (3, 1));
  151. // check that the row is what we expect
  152. Assert.AreEqual (new FbxDouble4 (5, 6, 7, 8), mx [2]);
  153. // Test operators on two matrices.
  154. using (var a = new FbxMatrix(
  155. 0,1,2,3,
  156. 4,5,6,7,
  157. 8,9,10,11,
  158. 12,13,14,15)) {
  159. using (var b = new FbxMatrix(
  160. 15,14,13,12,
  161. 11,10,9,8,
  162. 7,6,5,4,
  163. 3,2,1,0)) {
  164. using (var sum = new FbxMatrix(
  165. 15,15,15,15,
  166. 15,15,15,15,
  167. 15,15,15,15,
  168. 15,15,15,15)) {
  169. Assert.AreEqual(sum, a + b);
  170. }
  171. using (var diff = new FbxMatrix(
  172. -15,-13,-11,-9,
  173. -7,-5,-3,-1,
  174. 1,3,5,7,
  175. 9,11,13,15)) {
  176. Assert.AreEqual(diff, a - b);
  177. }
  178. using (var prod = new FbxMatrix(
  179. 304,358,412,466,
  180. 208,246,284,322,
  181. 112,134,156,178,
  182. 16,22,28,34)) {
  183. Assert.AreEqual(prod, a * b);
  184. }
  185. using (var neg = new FbxMatrix(
  186. 0,-1,-2,-3,
  187. -4,-5,-6,-7,
  188. -8,-9,-10,-11,
  189. -12,-13,-14,-15)) {
  190. Assert.AreEqual(neg, -a);
  191. }
  192. }
  193. }
  194. var eyePosition = new FbxVector4(1, 2, 3);
  195. var eyeDirection = new FbxVector4(-1, -1, -1);
  196. var eyeUp = new FbxVector4(0, 1, 0);
  197. using (mx = new FbxMatrix()) {
  198. mx.SetLookToRH(eyePosition, eyeDirection, eyeUp);
  199. AssertSimilar(new FbxMatrix(
  200. 0.707 , -0.408, 0.577, 0,
  201. 0 , 0.816, 0.577, 0,
  202. -0.707, -0.408, 0.577, 0,
  203. 1.414 , 0 ,-3.464, 1), mx, 1e-2);
  204. mx.SetLookToLH(eyePosition, eyeDirection, eyeUp);
  205. AssertSimilar(new FbxMatrix(
  206. -0.707, -0.408,-0.577, 0,
  207. 0 , 0.816,-0.577, 0,
  208. 0.707 , -0.408,-0.577, 0,
  209. -1.414, 0 , 3.464, 1), mx, 1e-2);
  210. mx.SetLookAtRH(eyePosition, eyeDirection, eyeUp);
  211. AssertSimilar(new FbxMatrix(
  212. 0.894 , -0.249, 0.371, 0,
  213. 0 , 0.834, 0.557, 0,
  214. -0.447, -0.498, 0.742, 0,
  215. 0.447 , 0.083,-3.713, 1), mx, 1e-2);
  216. mx.SetLookAtLH(eyePosition, eyeDirection, eyeUp);
  217. AssertSimilar(new FbxMatrix(
  218. -0.894, -0.249,-0.371, 0,
  219. 0 , 0.834,-0.557, 0,
  220. 0.447 , -0.498,-0.742, 0,
  221. -0.447, 0.083, 3.713, 1), mx, 1e-2);
  222. }
  223. }
  224. }
  225. }