Tess.cs 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750
  1. /*
  2. ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
  3. ** Copyright (C) 2011 Silicon Graphics, Inc.
  4. ** All Rights Reserved.
  5. **
  6. ** Permission is hereby granted, free of charge, to any person obtaining a copy
  7. ** of this software and associated documentation files (the "Software"), to deal
  8. ** in the Software without restriction, including without limitation the rights
  9. ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  10. ** of the Software, and to permit persons to whom the Software is furnished to do so,
  11. ** subject to the following conditions:
  12. **
  13. ** The above copyright notice including the dates of first publication and either this
  14. ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
  15. ** included in all copies or substantial portions of the Software.
  16. **
  17. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  18. ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
  19. ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
  20. ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  21. ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
  22. ** OR OTHER DEALINGS IN THE SOFTWARE.
  23. **
  24. ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
  25. ** be used in advertising or otherwise to promote the sale, use or other dealings in
  26. ** this Software without prior written authorization from Silicon Graphics, Inc.
  27. */
  28. /*
  29. ** Original Author: Eric Veach, July 1994.
  30. ** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/.
  31. ** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet
  32. */
  33. using System;
  34. using System.Diagnostics;
  35. namespace UnityEngine.Experimental.Rendering.Universal
  36. {
  37. using Real = System.Single;
  38. namespace LibTessDotNet
  39. {
  40. internal enum WindingRule
  41. {
  42. EvenOdd,
  43. NonZero,
  44. Positive,
  45. Negative,
  46. AbsGeqTwo
  47. }
  48. internal enum ElementType
  49. {
  50. Polygons,
  51. ConnectedPolygons,
  52. BoundaryContours
  53. }
  54. internal enum ContourOrientation
  55. {
  56. Original,
  57. Clockwise,
  58. CounterClockwise
  59. }
  60. internal struct ContourVertex
  61. {
  62. public Vec3 Position;
  63. public object Data;
  64. public override string ToString()
  65. {
  66. return string.Format("{0}, {1}", Position, Data);
  67. }
  68. }
  69. internal delegate object CombineCallback(Vec3 position, object[] data, Real[] weights);
  70. internal partial class Tess
  71. {
  72. private Mesh _mesh;
  73. private Vec3 _normal;
  74. private Vec3 _sUnit;
  75. private Vec3 _tUnit;
  76. private Real _bminX, _bminY, _bmaxX, _bmaxY;
  77. private WindingRule _windingRule;
  78. private Dict<ActiveRegion> _dict;
  79. private PriorityQueue<MeshUtils.Vertex> _pq;
  80. private MeshUtils.Vertex _event;
  81. private CombineCallback _combineCallback;
  82. private ContourVertex[] _vertices;
  83. private int _vertexCount;
  84. private int[] _elements;
  85. private int _elementCount;
  86. public Vec3 Normal { get { return _normal; } set { _normal = value; } }
  87. public Real SUnitX = 1;
  88. public Real SUnitY = 0;
  89. #if DOUBLE
  90. public Real SentinelCoord = 4e150;
  91. #else
  92. public Real SentinelCoord = 4e30f;
  93. #endif
  94. /// <summary>
  95. /// If true, will remove empty (zero area) polygons.
  96. /// </summary>
  97. public bool NoEmptyPolygons = false;
  98. /// <summary>
  99. /// If true, will use pooling to reduce GC (compare performance with/without, can vary wildly).
  100. /// </summary>
  101. public bool UsePooling = false;
  102. public ContourVertex[] Vertices { get { return _vertices; } }
  103. public int VertexCount { get { return _vertexCount; } }
  104. public int[] Elements { get { return _elements; } }
  105. public int ElementCount { get { return _elementCount; } }
  106. public Tess()
  107. {
  108. _normal = Vec3.Zero;
  109. _bminX = _bminY = _bmaxX = _bmaxY = 0;
  110. _windingRule = WindingRule.EvenOdd;
  111. _mesh = null;
  112. _vertices = null;
  113. _vertexCount = 0;
  114. _elements = null;
  115. _elementCount = 0;
  116. }
  117. private void ComputeNormal(ref Vec3 norm)
  118. {
  119. var v = _mesh._vHead._next;
  120. var minVal = new Real[3] { v._coords.X, v._coords.Y, v._coords.Z };
  121. var minVert = new MeshUtils.Vertex[3] { v, v, v };
  122. var maxVal = new Real[3] { v._coords.X, v._coords.Y, v._coords.Z };
  123. var maxVert = new MeshUtils.Vertex[3] { v, v, v };
  124. for (; v != _mesh._vHead; v = v._next)
  125. {
  126. if (v._coords.X < minVal[0]) { minVal[0] = v._coords.X; minVert[0] = v; }
  127. if (v._coords.Y < minVal[1]) { minVal[1] = v._coords.Y; minVert[1] = v; }
  128. if (v._coords.Z < minVal[2]) { minVal[2] = v._coords.Z; minVert[2] = v; }
  129. if (v._coords.X > maxVal[0]) { maxVal[0] = v._coords.X; maxVert[0] = v; }
  130. if (v._coords.Y > maxVal[1]) { maxVal[1] = v._coords.Y; maxVert[1] = v; }
  131. if (v._coords.Z > maxVal[2]) { maxVal[2] = v._coords.Z; maxVert[2] = v; }
  132. }
  133. // Find two vertices separated by at least 1/sqrt(3) of the maximum
  134. // distance between any two vertices
  135. int i = 0;
  136. if (maxVal[1] - minVal[1] > maxVal[0] - minVal[0]) { i = 1; }
  137. if (maxVal[2] - minVal[2] > maxVal[i] - minVal[i]) { i = 2; }
  138. if (minVal[i] >= maxVal[i])
  139. {
  140. // All vertices are the same -- normal doesn't matter
  141. norm = new Vec3 { X = 0, Y = 0, Z = 1 };
  142. return;
  143. }
  144. // Look for a third vertex which forms the triangle with maximum area
  145. // (Length of normal == twice the triangle area)
  146. Real maxLen2 = 0, tLen2;
  147. var v1 = minVert[i];
  148. var v2 = maxVert[i];
  149. Vec3 d1, d2, tNorm;
  150. Vec3.Sub(ref v1._coords, ref v2._coords, out d1);
  151. for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  152. {
  153. Vec3.Sub(ref v._coords, ref v2._coords, out d2);
  154. tNorm.X = d1.Y * d2.Z - d1.Z * d2.Y;
  155. tNorm.Y = d1.Z * d2.X - d1.X * d2.Z;
  156. tNorm.Z = d1.X * d2.Y - d1.Y * d2.X;
  157. tLen2 = tNorm.X*tNorm.X + tNorm.Y*tNorm.Y + tNorm.Z*tNorm.Z;
  158. if (tLen2 > maxLen2)
  159. {
  160. maxLen2 = tLen2;
  161. norm = tNorm;
  162. }
  163. }
  164. if (maxLen2 <= 0.0f)
  165. {
  166. // All points lie on a single line -- any decent normal will do
  167. norm = Vec3.Zero;
  168. i = Vec3.LongAxis(ref d1);
  169. norm[i] = 1;
  170. }
  171. }
  172. private void CheckOrientation()
  173. {
  174. // When we compute the normal automatically, we choose the orientation
  175. // so that the the sum of the signed areas of all contours is non-negative.
  176. Real area = 0.0f;
  177. for (var f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
  178. {
  179. if (f._anEdge._winding <= 0)
  180. {
  181. continue;
  182. }
  183. area += MeshUtils.FaceArea(f);
  184. }
  185. if (area < 0.0f)
  186. {
  187. // Reverse the orientation by flipping all the t-coordinates
  188. for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  189. {
  190. v._t = -v._t;
  191. }
  192. Vec3.Neg(ref _tUnit);
  193. }
  194. }
  195. private void ProjectPolygon()
  196. {
  197. var norm = _normal;
  198. bool computedNormal = false;
  199. if (norm.X == 0.0f && norm.Y == 0.0f && norm.Z == 0.0f)
  200. {
  201. ComputeNormal(ref norm);
  202. _normal = norm;
  203. computedNormal = true;
  204. }
  205. int i = Vec3.LongAxis(ref norm);
  206. _sUnit[i] = 0;
  207. _sUnit[(i + 1) % 3] = SUnitX;
  208. _sUnit[(i + 2) % 3] = SUnitY;
  209. _tUnit[i] = 0;
  210. _tUnit[(i + 1) % 3] = norm[i] > 0.0f ? -SUnitY : SUnitY;
  211. _tUnit[(i + 2) % 3] = norm[i] > 0.0f ? SUnitX : -SUnitX;
  212. // Project the vertices onto the sweep plane
  213. for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  214. {
  215. Vec3.Dot(ref v._coords, ref _sUnit, out v._s);
  216. Vec3.Dot(ref v._coords, ref _tUnit, out v._t);
  217. }
  218. if (computedNormal)
  219. {
  220. CheckOrientation();
  221. }
  222. // Compute ST bounds.
  223. bool first = true;
  224. for (var v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  225. {
  226. if (first)
  227. {
  228. _bminX = _bmaxX = v._s;
  229. _bminY = _bmaxY = v._t;
  230. first = false;
  231. }
  232. else
  233. {
  234. if (v._s < _bminX) _bminX = v._s;
  235. if (v._s > _bmaxX) _bmaxX = v._s;
  236. if (v._t < _bminY) _bminY = v._t;
  237. if (v._t > _bmaxY) _bmaxY = v._t;
  238. }
  239. }
  240. }
  241. /// <summary>
  242. /// TessellateMonoRegion( face ) tessellates a monotone region
  243. /// (what else would it do??) The region must consist of a single
  244. /// loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
  245. /// case means that any vertical line intersects the interior of the
  246. /// region in a single interval.
  247. ///
  248. /// Tessellation consists of adding interior edges (actually pairs of
  249. /// half-edges), to split the region into non-overlapping triangles.
  250. ///
  251. /// The basic idea is explained in Preparata and Shamos (which I don't
  252. /// have handy right now), although their implementation is more
  253. /// complicated than this one. The are two edge chains, an upper chain
  254. /// and a lower chain. We process all vertices from both chains in order,
  255. /// from right to left.
  256. ///
  257. /// The algorithm ensures that the following invariant holds after each
  258. /// vertex is processed: the untessellated region consists of two
  259. /// chains, where one chain (say the upper) is a single edge, and
  260. /// the other chain is concave. The left vertex of the single edge
  261. /// is always to the left of all vertices in the concave chain.
  262. ///
  263. /// Each step consists of adding the rightmost unprocessed vertex to one
  264. /// of the two chains, and forming a fan of triangles from the rightmost
  265. /// of two chain endpoints. Determining whether we can add each triangle
  266. /// to the fan is a simple orientation test. By making the fan as large
  267. /// as possible, we restore the invariant (check it yourself).
  268. /// </summary>
  269. private void TessellateMonoRegion(MeshUtils.Face face)
  270. {
  271. // All edges are oriented CCW around the boundary of the region.
  272. // First, find the half-edge whose origin vertex is rightmost.
  273. // Since the sweep goes from left to right, face->anEdge should
  274. // be close to the edge we want.
  275. var up = face._anEdge;
  276. Debug.Assert(up._Lnext != up && up._Lnext._Lnext != up);
  277. while (Geom.VertLeq(up._Dst, up._Org)) up = up._Lprev;
  278. while (Geom.VertLeq(up._Org, up._Dst)) up = up._Lnext;
  279. var lo = up._Lprev;
  280. while (up._Lnext != lo)
  281. {
  282. if (Geom.VertLeq(up._Dst, lo._Org))
  283. {
  284. // up.Dst is on the left. It is safe to form triangles from lo.Org.
  285. // The EdgeGoesLeft test guarantees progress even when some triangles
  286. // are CW, given that the upper and lower chains are truly monotone.
  287. while (lo._Lnext != up && (Geom.EdgeGoesLeft(lo._Lnext)
  288. || Geom.EdgeSign(lo._Org, lo._Dst, lo._Lnext._Dst) <= 0.0f))
  289. {
  290. lo = _mesh.Connect(lo._Lnext, lo)._Sym;
  291. }
  292. lo = lo._Lprev;
  293. }
  294. else
  295. {
  296. // lo.Org is on the left. We can make CCW triangles from up.Dst.
  297. while (lo._Lnext != up && (Geom.EdgeGoesRight(up._Lprev)
  298. || Geom.EdgeSign(up._Dst, up._Org, up._Lprev._Org) >= 0.0f))
  299. {
  300. up = _mesh.Connect(up, up._Lprev)._Sym;
  301. }
  302. up = up._Lnext;
  303. }
  304. }
  305. // Now lo.Org == up.Dst == the leftmost vertex. The remaining region
  306. // can be tessellated in a fan from this leftmost vertex.
  307. Debug.Assert(lo._Lnext != up);
  308. while (lo._Lnext._Lnext != up)
  309. {
  310. lo = _mesh.Connect(lo._Lnext, lo)._Sym;
  311. }
  312. }
  313. /// <summary>
  314. /// TessellateInterior( mesh ) tessellates each region of
  315. /// the mesh which is marked "inside" the polygon. Each such region
  316. /// must be monotone.
  317. /// </summary>
  318. private void TessellateInterior()
  319. {
  320. MeshUtils.Face f, next;
  321. for (f = _mesh._fHead._next; f != _mesh._fHead; f = next)
  322. {
  323. // Make sure we don't try to tessellate the new triangles.
  324. next = f._next;
  325. if (f._inside)
  326. {
  327. TessellateMonoRegion(f);
  328. }
  329. }
  330. }
  331. /// <summary>
  332. /// DiscardExterior zaps (ie. sets to null) all faces
  333. /// which are not marked "inside" the polygon. Since further mesh operations
  334. /// on NULL faces are not allowed, the main purpose is to clean up the
  335. /// mesh so that exterior loops are not represented in the data structure.
  336. /// </summary>
  337. private void DiscardExterior()
  338. {
  339. MeshUtils.Face f, next;
  340. for (f = _mesh._fHead._next; f != _mesh._fHead; f = next)
  341. {
  342. // Since f will be destroyed, save its next pointer.
  343. next = f._next;
  344. if( ! f._inside ) {
  345. _mesh.ZapFace(f);
  346. }
  347. }
  348. }
  349. /// <summary>
  350. /// SetWindingNumber( value, keepOnlyBoundary ) resets the
  351. /// winding numbers on all edges so that regions marked "inside" the
  352. /// polygon have a winding number of "value", and regions outside
  353. /// have a winding number of 0.
  354. ///
  355. /// If keepOnlyBoundary is TRUE, it also deletes all edges which do not
  356. /// separate an interior region from an exterior one.
  357. /// </summary>
  358. private void SetWindingNumber(int value, bool keepOnlyBoundary)
  359. {
  360. MeshUtils.Edge e, eNext;
  361. for (e = _mesh._eHead._next; e != _mesh._eHead; e = eNext)
  362. {
  363. eNext = e._next;
  364. if (e._Rface._inside != e._Lface._inside)
  365. {
  366. /* This is a boundary edge (one side is interior, one is exterior). */
  367. e._winding = (e._Lface._inside) ? value : -value;
  368. }
  369. else
  370. {
  371. /* Both regions are interior, or both are exterior. */
  372. if (!keepOnlyBoundary)
  373. {
  374. e._winding = 0;
  375. }
  376. else
  377. {
  378. _mesh.Delete(e);
  379. }
  380. }
  381. }
  382. }
  383. private int GetNeighbourFace(MeshUtils.Edge edge)
  384. {
  385. if (edge._Rface == null)
  386. return MeshUtils.Undef;
  387. if (!edge._Rface._inside)
  388. return MeshUtils.Undef;
  389. return edge._Rface._n;
  390. }
  391. private void OutputPolymesh(ElementType elementType, int polySize)
  392. {
  393. MeshUtils.Vertex v;
  394. MeshUtils.Face f;
  395. MeshUtils.Edge edge;
  396. int maxFaceCount = 0;
  397. int maxVertexCount = 0;
  398. int faceVerts, i;
  399. if (polySize < 3)
  400. {
  401. polySize = 3;
  402. }
  403. // Assume that the input data is triangles now.
  404. // Try to merge as many polygons as possible
  405. if (polySize > 3)
  406. {
  407. _mesh.MergeConvexFaces(polySize);
  408. }
  409. // Mark unused
  410. for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  411. v._n = MeshUtils.Undef;
  412. // Create unique IDs for all vertices and faces.
  413. for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
  414. {
  415. f._n = MeshUtils.Undef;
  416. if (!f._inside) continue;
  417. if (NoEmptyPolygons)
  418. {
  419. var area = MeshUtils.FaceArea(f);
  420. if (Math.Abs(area) < Real.Epsilon)
  421. {
  422. continue;
  423. }
  424. }
  425. edge = f._anEdge;
  426. faceVerts = 0;
  427. do {
  428. v = edge._Org;
  429. if (v._n == MeshUtils.Undef)
  430. {
  431. v._n = maxVertexCount;
  432. maxVertexCount++;
  433. }
  434. faceVerts++;
  435. edge = edge._Lnext;
  436. }
  437. while (edge != f._anEdge);
  438. Debug.Assert(faceVerts <= polySize);
  439. f._n = maxFaceCount;
  440. ++maxFaceCount;
  441. }
  442. _elementCount = maxFaceCount;
  443. if (elementType == ElementType.ConnectedPolygons)
  444. maxFaceCount *= 2;
  445. _elements = new int[maxFaceCount * polySize];
  446. _vertexCount = maxVertexCount;
  447. _vertices = new ContourVertex[_vertexCount];
  448. // Output vertices.
  449. for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
  450. {
  451. if (v._n != MeshUtils.Undef)
  452. {
  453. // Store coordinate
  454. _vertices[v._n].Position = v._coords;
  455. _vertices[v._n].Data = v._data;
  456. }
  457. }
  458. // Output indices.
  459. int elementIndex = 0;
  460. for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
  461. {
  462. if (!f._inside) continue;
  463. if (NoEmptyPolygons)
  464. {
  465. var area = MeshUtils.FaceArea(f);
  466. if (Math.Abs(area) < Real.Epsilon)
  467. {
  468. continue;
  469. }
  470. }
  471. // Store polygon
  472. edge = f._anEdge;
  473. faceVerts = 0;
  474. do {
  475. v = edge._Org;
  476. _elements[elementIndex++] = v._n;
  477. faceVerts++;
  478. edge = edge._Lnext;
  479. } while (edge != f._anEdge);
  480. // Fill unused.
  481. for (i = faceVerts; i < polySize; ++i)
  482. {
  483. _elements[elementIndex++] = MeshUtils.Undef;
  484. }
  485. // Store polygon connectivity
  486. if (elementType == ElementType.ConnectedPolygons)
  487. {
  488. edge = f._anEdge;
  489. do
  490. {
  491. _elements[elementIndex++] = GetNeighbourFace(edge);
  492. edge = edge._Lnext;
  493. } while (edge != f._anEdge);
  494. // Fill unused.
  495. for (i = faceVerts; i < polySize; ++i)
  496. {
  497. _elements[elementIndex++] = MeshUtils.Undef;
  498. }
  499. }
  500. }
  501. }
  502. private void OutputContours()
  503. {
  504. MeshUtils.Face f;
  505. MeshUtils.Edge edge, start;
  506. int startVert = 0;
  507. int vertCount = 0;
  508. _vertexCount = 0;
  509. _elementCount = 0;
  510. for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
  511. {
  512. if (!f._inside) continue;
  513. start = edge = f._anEdge;
  514. do
  515. {
  516. ++_vertexCount;
  517. edge = edge._Lnext;
  518. }
  519. while (edge != start);
  520. ++_elementCount;
  521. }
  522. _elements = new int[_elementCount * 2];
  523. _vertices = new ContourVertex[_vertexCount];
  524. int vertIndex = 0;
  525. int elementIndex = 0;
  526. startVert = 0;
  527. for (f = _mesh._fHead._next; f != _mesh._fHead; f = f._next)
  528. {
  529. if (!f._inside) continue;
  530. vertCount = 0;
  531. start = edge = f._anEdge;
  532. do {
  533. _vertices[vertIndex].Position = edge._Org._coords;
  534. _vertices[vertIndex].Data = edge._Org._data;
  535. ++vertIndex;
  536. ++vertCount;
  537. edge = edge._Lnext;
  538. } while (edge != start);
  539. _elements[elementIndex++] = startVert;
  540. _elements[elementIndex++] = vertCount;
  541. startVert += vertCount;
  542. }
  543. }
  544. private Real SignedArea(ContourVertex[] vertices)
  545. {
  546. Real area = 0.0f;
  547. for (int i = 0; i < vertices.Length; i++)
  548. {
  549. var v0 = vertices[i];
  550. var v1 = vertices[(i + 1) % vertices.Length];
  551. area += v0.Position.X * v1.Position.Y;
  552. area -= v0.Position.Y * v1.Position.X;
  553. }
  554. return 0.5f * area;
  555. }
  556. public void AddContour(ContourVertex[] vertices)
  557. {
  558. AddContour(vertices, ContourOrientation.Original);
  559. }
  560. public void AddContour(ContourVertex[] vertices, ContourOrientation forceOrientation)
  561. {
  562. if (_mesh == null)
  563. {
  564. _mesh = new Mesh();
  565. }
  566. bool reverse = false;
  567. if (forceOrientation != ContourOrientation.Original)
  568. {
  569. var area = SignedArea(vertices);
  570. reverse = (forceOrientation == ContourOrientation.Clockwise && area < 0.0f) || (forceOrientation == ContourOrientation.CounterClockwise && area > 0.0f);
  571. }
  572. MeshUtils.Edge e = null;
  573. for (int i = 0; i < vertices.Length; ++i)
  574. {
  575. if (e == null)
  576. {
  577. e = _mesh.MakeEdge();
  578. _mesh.Splice(e, e._Sym);
  579. }
  580. else
  581. {
  582. // Create a new vertex and edge which immediately follow e
  583. // in the ordering around the left face.
  584. _mesh.SplitEdge(e);
  585. e = e._Lnext;
  586. }
  587. int index = reverse ? vertices.Length - 1 - i : i;
  588. // The new vertex is now e._Org.
  589. e._Org._coords = vertices[index].Position;
  590. e._Org._data = vertices[index].Data;
  591. // The winding of an edge says how the winding number changes as we
  592. // cross from the edge's right face to its left face. We add the
  593. // vertices in such an order that a CCW contour will add +1 to
  594. // the winding number of the region inside the contour.
  595. e._winding = 1;
  596. e._Sym._winding = -1;
  597. }
  598. }
  599. public void Tessellate(WindingRule windingRule, ElementType elementType, int polySize)
  600. {
  601. Tessellate(windingRule, elementType, polySize, null);
  602. }
  603. public void Tessellate(WindingRule windingRule, ElementType elementType, int polySize, CombineCallback combineCallback)
  604. {
  605. _normal = Vec3.Zero;
  606. _vertices = null;
  607. _elements = null;
  608. _windingRule = windingRule;
  609. _combineCallback = combineCallback;
  610. if (_mesh == null)
  611. {
  612. return;
  613. }
  614. // Determine the polygon normal and project vertices onto the plane
  615. // of the polygon.
  616. ProjectPolygon();
  617. // ComputeInterior computes the planar arrangement specified
  618. // by the given contours, and further subdivides this arrangement
  619. // into regions. Each region is marked "inside" if it belongs
  620. // to the polygon, according to the rule given by windingRule.
  621. // Each interior region is guaranteed be monotone.
  622. ComputeInterior();
  623. // If the user wants only the boundary contours, we throw away all edges
  624. // except those which separate the interior from the exterior.
  625. // Otherwise we tessellate all the regions marked "inside".
  626. if (elementType == ElementType.BoundaryContours)
  627. {
  628. SetWindingNumber(1, true);
  629. }
  630. else
  631. {
  632. TessellateInterior();
  633. }
  634. _mesh.Check();
  635. if (elementType == ElementType.BoundaryContours)
  636. {
  637. OutputContours();
  638. }
  639. else
  640. {
  641. OutputPolymesh(elementType, polySize);
  642. }
  643. if (UsePooling)
  644. {
  645. _mesh.Free();
  646. }
  647. _mesh = null;
  648. }
  649. }
  650. }
  651. }