Geom.cs 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. /*
  2. ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
  3. ** Copyright (C) 2011 Silicon Graphics, Inc.
  4. ** All Rights Reserved.
  5. **
  6. ** Permission is hereby granted, free of charge, to any person obtaining a copy
  7. ** of this software and associated documentation files (the "Software"), to deal
  8. ** in the Software without restriction, including without limitation the rights
  9. ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  10. ** of the Software, and to permit persons to whom the Software is furnished to do so,
  11. ** subject to the following conditions:
  12. **
  13. ** The above copyright notice including the dates of first publication and either this
  14. ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
  15. ** included in all copies or substantial portions of the Software.
  16. **
  17. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
  18. ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
  19. ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
  20. ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  21. ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
  22. ** OR OTHER DEALINGS IN THE SOFTWARE.
  23. **
  24. ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
  25. ** be used in advertising or otherwise to promote the sale, use or other dealings in
  26. ** this Software without prior written authorization from Silicon Graphics, Inc.
  27. */
  28. /*
  29. ** Original Author: Eric Veach, July 1994.
  30. ** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/.
  31. ** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet
  32. */
  33. using System;
  34. using System.Diagnostics;
  35. namespace UnityEngine.Experimental.Rendering.Universal
  36. {
  37. using Real = System.Single;
  38. namespace LibTessDotNet
  39. {
  40. internal static class Geom
  41. {
  42. public static bool IsWindingInside(WindingRule rule, int n)
  43. {
  44. switch (rule)
  45. {
  46. case WindingRule.EvenOdd:
  47. return (n & 1) == 1;
  48. case WindingRule.NonZero:
  49. return n != 0;
  50. case WindingRule.Positive:
  51. return n > 0;
  52. case WindingRule.Negative:
  53. return n < 0;
  54. case WindingRule.AbsGeqTwo:
  55. return n >= 2 || n <= -2;
  56. }
  57. throw new Exception("Wrong winding rule");
  58. }
  59. public static bool VertCCW(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
  60. {
  61. return (u._s * (v._t - w._t) + v._s * (w._t - u._t) + w._s * (u._t - v._t)) >= 0.0f;
  62. }
  63. public static bool VertEq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
  64. {
  65. return lhs._s == rhs._s && lhs._t == rhs._t;
  66. }
  67. public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
  68. {
  69. return (lhs._s < rhs._s) || (lhs._s == rhs._s && lhs._t <= rhs._t);
  70. }
  71. /// <summary>
  72. /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
  73. /// evaluates the t-coord of the edge uw at the s-coord of the vertex v.
  74. /// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
  75. /// If uw is vertical (and thus passes thru v), the result is zero.
  76. ///
  77. /// The calculation is extremely accurate and stable, even when v
  78. /// is very close to u or w. In particular if we set v->t = 0 and
  79. /// let r be the negated result (this evaluates (uw)(v->s)), then
  80. /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
  81. /// </summary>
  82. public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
  83. {
  84. Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
  85. var gapL = v._s - u._s;
  86. var gapR = w._s - v._s;
  87. if (gapL + gapR > 0.0f)
  88. {
  89. if (gapL < gapR)
  90. {
  91. return (v._t - u._t) + (u._t - w._t) * (gapL / (gapL + gapR));
  92. }
  93. else
  94. {
  95. return (v._t - w._t) + (w._t - u._t) * (gapR / (gapL + gapR));
  96. }
  97. }
  98. /* vertical line */
  99. return 0;
  100. }
  101. /// <summary>
  102. /// Returns a number whose sign matches EdgeEval(u,v,w) but which
  103. /// is cheaper to evaluate. Returns > 0, == 0 , or < 0
  104. /// as v is above, on, or below the edge uw.
  105. /// </summary>
  106. public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
  107. {
  108. Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
  109. var gapL = v._s - u._s;
  110. var gapR = w._s - v._s;
  111. if (gapL + gapR > 0.0f)
  112. {
  113. return (v._t - w._t) * gapL + (v._t - u._t) * gapR;
  114. }
  115. /* vertical line */
  116. return 0;
  117. }
  118. public static bool TransLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
  119. {
  120. return (lhs._t < rhs._t) || (lhs._t == rhs._t && lhs._s <= rhs._s);
  121. }
  122. public static Real TransEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
  123. {
  124. Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
  125. var gapL = v._t - u._t;
  126. var gapR = w._t - v._t;
  127. if (gapL + gapR > 0.0f)
  128. {
  129. if (gapL < gapR)
  130. {
  131. return (v._s - u._s) + (u._s - w._s) * (gapL / (gapL + gapR));
  132. }
  133. else
  134. {
  135. return (v._s - w._s) + (w._s - u._s) * (gapR / (gapL + gapR));
  136. }
  137. }
  138. /* vertical line */
  139. return 0;
  140. }
  141. public static Real TransSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
  142. {
  143. Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
  144. var gapL = v._t - u._t;
  145. var gapR = w._t - v._t;
  146. if (gapL + gapR > 0.0f)
  147. {
  148. return (v._s - w._s) * gapL + (v._s - u._s) * gapR;
  149. }
  150. /* vertical line */
  151. return 0;
  152. }
  153. public static bool EdgeGoesLeft(MeshUtils.Edge e)
  154. {
  155. return VertLeq(e._Dst, e._Org);
  156. }
  157. public static bool EdgeGoesRight(MeshUtils.Edge e)
  158. {
  159. return VertLeq(e._Org, e._Dst);
  160. }
  161. public static Real VertL1dist(MeshUtils.Vertex u, MeshUtils.Vertex v)
  162. {
  163. return Math.Abs(u._s - v._s) + Math.Abs(u._t - v._t);
  164. }
  165. public static void AddWinding(MeshUtils.Edge eDst, MeshUtils.Edge eSrc)
  166. {
  167. eDst._winding += eSrc._winding;
  168. eDst._Sym._winding += eSrc._Sym._winding;
  169. }
  170. public static Real Interpolate(Real a, Real x, Real b, Real y)
  171. {
  172. if (a < 0.0f)
  173. {
  174. a = 0.0f;
  175. }
  176. if (b < 0.0f)
  177. {
  178. b = 0.0f;
  179. }
  180. return ((a <= b) ? ((b == 0.0f) ? ((x+y) / 2.0f)
  181. : (x + (y-x) * (a/(a+b))))
  182. : (y + (x-y) * (b/(a+b))));
  183. }
  184. static void Swap(ref MeshUtils.Vertex a, ref MeshUtils.Vertex b)
  185. {
  186. var tmp = a;
  187. a = b;
  188. b = tmp;
  189. }
  190. /// <summary>
  191. /// Given edges (o1,d1) and (o2,d2), compute their point of intersection.
  192. /// The computed point is guaranteed to lie in the intersection of the
  193. /// bounding rectangles defined by each edge.
  194. /// </summary>
  195. public static void EdgeIntersect(MeshUtils.Vertex o1, MeshUtils.Vertex d1, MeshUtils.Vertex o2, MeshUtils.Vertex d2, MeshUtils.Vertex v)
  196. {
  197. // This is certainly not the most efficient way to find the intersection
  198. // of two line segments, but it is very numerically stable.
  199. //
  200. // Strategy: find the two middle vertices in the VertLeq ordering,
  201. // and interpolate the intersection s-value from these. Then repeat
  202. // using the TransLeq ordering to find the intersection t-value.
  203. if (!VertLeq(o1, d1)) { Swap(ref o1, ref d1); }
  204. if (!VertLeq(o2, d2)) { Swap(ref o2, ref d2); }
  205. if (!VertLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
  206. if (!VertLeq(o2, d1))
  207. {
  208. // Technically, no intersection -- do our best
  209. v._s = (o2._s + d1._s) / 2.0f;
  210. }
  211. else if (VertLeq(d1, d2))
  212. {
  213. // Interpolate between o2 and d1
  214. var z1 = EdgeEval(o1, o2, d1);
  215. var z2 = EdgeEval(o2, d1, d2);
  216. if (z1 + z2 < 0.0f)
  217. {
  218. z1 = -z1;
  219. z2 = -z2;
  220. }
  221. v._s = Interpolate(z1, o2._s, z2, d1._s);
  222. }
  223. else
  224. {
  225. // Interpolate between o2 and d2
  226. var z1 = EdgeSign(o1, o2, d1);
  227. var z2 = -EdgeSign(o1, d2, d1);
  228. if (z1 + z2 < 0.0f)
  229. {
  230. z1 = -z1;
  231. z2 = -z2;
  232. }
  233. v._s = Interpolate(z1, o2._s, z2, d2._s);
  234. }
  235. // Now repeat the process for t
  236. if (!TransLeq(o1, d1)) { Swap(ref o1, ref d1); }
  237. if (!TransLeq(o2, d2)) { Swap(ref o2, ref d2); }
  238. if (!TransLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
  239. if (!TransLeq(o2, d1))
  240. {
  241. // Technically, no intersection -- do our best
  242. v._t = (o2._t + d1._t) / 2.0f;
  243. }
  244. else if (TransLeq(d1, d2))
  245. {
  246. // Interpolate between o2 and d1
  247. var z1 = TransEval(o1, o2, d1);
  248. var z2 = TransEval(o2, d1, d2);
  249. if (z1 + z2 < 0.0f)
  250. {
  251. z1 = -z1;
  252. z2 = -z2;
  253. }
  254. v._t = Interpolate(z1, o2._t, z2, d1._t);
  255. }
  256. else
  257. {
  258. // Interpolate between o2 and d2
  259. var z1 = TransSign(o1, o2, d1);
  260. var z2 = -TransSign(o1, d2, d1);
  261. if (z1 + z2 < 0.0f)
  262. {
  263. z1 = -z1;
  264. z2 = -z2;
  265. }
  266. v._t = Interpolate(z1, o2._t, z2, d2._t);
  267. }
  268. }
  269. }
  270. }
  271. }