123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- /*
- ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
- ** Copyright (C) 2011 Silicon Graphics, Inc.
- ** All Rights Reserved.
- **
- ** Permission is hereby granted, free of charge, to any person obtaining a copy
- ** of this software and associated documentation files (the "Software"), to deal
- ** in the Software without restriction, including without limitation the rights
- ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
- ** of the Software, and to permit persons to whom the Software is furnished to do so,
- ** subject to the following conditions:
- **
- ** The above copyright notice including the dates of first publication and either this
- ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
- ** included in all copies or substantial portions of the Software.
- **
- ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
- ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
- ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
- ** OR OTHER DEALINGS IN THE SOFTWARE.
- **
- ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
- ** be used in advertising or otherwise to promote the sale, use or other dealings in
- ** this Software without prior written authorization from Silicon Graphics, Inc.
- */
- /*
- ** Original Author: Eric Veach, July 1994.
- ** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/.
- ** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet
- */
- using System;
- using System.Diagnostics;
- namespace UnityEngine.Experimental.Rendering.Universal
- {
- using Real = System.Single;
- namespace LibTessDotNet
- {
- internal static class Geom
- {
- public static bool IsWindingInside(WindingRule rule, int n)
- {
- switch (rule)
- {
- case WindingRule.EvenOdd:
- return (n & 1) == 1;
- case WindingRule.NonZero:
- return n != 0;
- case WindingRule.Positive:
- return n > 0;
- case WindingRule.Negative:
- return n < 0;
- case WindingRule.AbsGeqTwo:
- return n >= 2 || n <= -2;
- }
- throw new Exception("Wrong winding rule");
- }
- public static bool VertCCW(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
- {
- return (u._s * (v._t - w._t) + v._s * (w._t - u._t) + w._s * (u._t - v._t)) >= 0.0f;
- }
- public static bool VertEq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
- {
- return lhs._s == rhs._s && lhs._t == rhs._t;
- }
- public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
- {
- return (lhs._s < rhs._s) || (lhs._s == rhs._s && lhs._t <= rhs._t);
- }
- /// <summary>
- /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
- /// evaluates the t-coord of the edge uw at the s-coord of the vertex v.
- /// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
- /// If uw is vertical (and thus passes thru v), the result is zero.
- ///
- /// The calculation is extremely accurate and stable, even when v
- /// is very close to u or w. In particular if we set v->t = 0 and
- /// let r be the negated result (this evaluates (uw)(v->s)), then
- /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
- /// </summary>
- public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
- {
- Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
- var gapL = v._s - u._s;
- var gapR = w._s - v._s;
- if (gapL + gapR > 0.0f)
- {
- if (gapL < gapR)
- {
- return (v._t - u._t) + (u._t - w._t) * (gapL / (gapL + gapR));
- }
- else
- {
- return (v._t - w._t) + (w._t - u._t) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
- /// <summary>
- /// Returns a number whose sign matches EdgeEval(u,v,w) but which
- /// is cheaper to evaluate. Returns > 0, == 0 , or < 0
- /// as v is above, on, or below the edge uw.
- /// </summary>
- public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
- {
- Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
- var gapL = v._s - u._s;
- var gapR = w._s - v._s;
- if (gapL + gapR > 0.0f)
- {
- return (v._t - w._t) * gapL + (v._t - u._t) * gapR;
- }
- /* vertical line */
- return 0;
- }
- public static bool TransLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
- {
- return (lhs._t < rhs._t) || (lhs._t == rhs._t && lhs._s <= rhs._s);
- }
- public static Real TransEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
- {
- Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
- var gapL = v._t - u._t;
- var gapR = w._t - v._t;
- if (gapL + gapR > 0.0f)
- {
- if (gapL < gapR)
- {
- return (v._s - u._s) + (u._s - w._s) * (gapL / (gapL + gapR));
- }
- else
- {
- return (v._s - w._s) + (w._s - u._s) * (gapR / (gapL + gapR));
- }
- }
- /* vertical line */
- return 0;
- }
- public static Real TransSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
- {
- Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
- var gapL = v._t - u._t;
- var gapR = w._t - v._t;
- if (gapL + gapR > 0.0f)
- {
- return (v._s - w._s) * gapL + (v._s - u._s) * gapR;
- }
- /* vertical line */
- return 0;
- }
- public static bool EdgeGoesLeft(MeshUtils.Edge e)
- {
- return VertLeq(e._Dst, e._Org);
- }
- public static bool EdgeGoesRight(MeshUtils.Edge e)
- {
- return VertLeq(e._Org, e._Dst);
- }
- public static Real VertL1dist(MeshUtils.Vertex u, MeshUtils.Vertex v)
- {
- return Math.Abs(u._s - v._s) + Math.Abs(u._t - v._t);
- }
- public static void AddWinding(MeshUtils.Edge eDst, MeshUtils.Edge eSrc)
- {
- eDst._winding += eSrc._winding;
- eDst._Sym._winding += eSrc._Sym._winding;
- }
- public static Real Interpolate(Real a, Real x, Real b, Real y)
- {
- if (a < 0.0f)
- {
- a = 0.0f;
- }
- if (b < 0.0f)
- {
- b = 0.0f;
- }
- return ((a <= b) ? ((b == 0.0f) ? ((x+y) / 2.0f)
- : (x + (y-x) * (a/(a+b))))
- : (y + (x-y) * (b/(a+b))));
- }
- static void Swap(ref MeshUtils.Vertex a, ref MeshUtils.Vertex b)
- {
- var tmp = a;
- a = b;
- b = tmp;
- }
- /// <summary>
- /// Given edges (o1,d1) and (o2,d2), compute their point of intersection.
- /// The computed point is guaranteed to lie in the intersection of the
- /// bounding rectangles defined by each edge.
- /// </summary>
- public static void EdgeIntersect(MeshUtils.Vertex o1, MeshUtils.Vertex d1, MeshUtils.Vertex o2, MeshUtils.Vertex d2, MeshUtils.Vertex v)
- {
- // This is certainly not the most efficient way to find the intersection
- // of two line segments, but it is very numerically stable.
- //
- // Strategy: find the two middle vertices in the VertLeq ordering,
- // and interpolate the intersection s-value from these. Then repeat
- // using the TransLeq ordering to find the intersection t-value.
- if (!VertLeq(o1, d1)) { Swap(ref o1, ref d1); }
- if (!VertLeq(o2, d2)) { Swap(ref o2, ref d2); }
- if (!VertLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
- if (!VertLeq(o2, d1))
- {
- // Technically, no intersection -- do our best
- v._s = (o2._s + d1._s) / 2.0f;
- }
- else if (VertLeq(d1, d2))
- {
- // Interpolate between o2 and d1
- var z1 = EdgeEval(o1, o2, d1);
- var z2 = EdgeEval(o2, d1, d2);
- if (z1 + z2 < 0.0f)
- {
- z1 = -z1;
- z2 = -z2;
- }
- v._s = Interpolate(z1, o2._s, z2, d1._s);
- }
- else
- {
- // Interpolate between o2 and d2
- var z1 = EdgeSign(o1, o2, d1);
- var z2 = -EdgeSign(o1, d2, d1);
- if (z1 + z2 < 0.0f)
- {
- z1 = -z1;
- z2 = -z2;
- }
- v._s = Interpolate(z1, o2._s, z2, d2._s);
- }
- // Now repeat the process for t
- if (!TransLeq(o1, d1)) { Swap(ref o1, ref d1); }
- if (!TransLeq(o2, d2)) { Swap(ref o2, ref d2); }
- if (!TransLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
- if (!TransLeq(o2, d1))
- {
- // Technically, no intersection -- do our best
- v._t = (o2._t + d1._t) / 2.0f;
- }
- else if (TransLeq(d1, d2))
- {
- // Interpolate between o2 and d1
- var z1 = TransEval(o1, o2, d1);
- var z2 = TransEval(o2, d1, d2);
- if (z1 + z2 < 0.0f)
- {
- z1 = -z1;
- z2 = -z2;
- }
- v._t = Interpolate(z1, o2._t, z2, d1._t);
- }
- else
- {
- // Interpolate between o2 and d2
- var z1 = TransSign(o1, o2, d1);
- var z2 = -TransSign(o1, d2, d1);
- if (z1 + z2 < 0.0f)
- {
- z1 = -z1;
- z2 = -z2;
- }
- v._t = Interpolate(z1, o2._t, z2, d2._t);
- }
- }
- }
- }
- }
|