FbxAMatrixTest.cs 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. // ***********************************************************************
  2. // Copyright (c) 2017 Unity Technologies. All rights reserved.
  3. //
  4. // Licensed under the ##LICENSENAME##.
  5. // See LICENSE.md file in the project root for full license information.
  6. // ***********************************************************************
  7. using NUnit.Framework;
  8. using Autodesk.Fbx;
  9. namespace Autodesk.Fbx.UnitTests
  10. {
  11. public class FbxAMatrixTest : FbxDouble4x4TestBase<FbxAMatrix>
  12. {
  13. [Test]
  14. public void TestEquality()
  15. {
  16. var zero = new FbxVector4();
  17. var one = new FbxVector4(1,1,1);
  18. var mx1 = new FbxAMatrix(zero, zero, one);
  19. var mx2 = new FbxAMatrix(one, zero, one);
  20. var mx1copy = new FbxAMatrix(zero, zero, one);
  21. EqualityTester<FbxAMatrix>.TestEquality(mx1, mx2, mx1copy);
  22. }
  23. // Helper for the scaling operators.
  24. //
  25. // If scale is a power of two, tolerance can be zero.
  26. //
  27. // Scaling an FbxAMatrix scales the 3x3 matrix for scale and rotation,
  28. // and zeroes out the translation.
  29. static void AssertScaled(FbxAMatrix expected, FbxAMatrix scaled,
  30. double scale, double tolerance = 0)
  31. {
  32. for(int y = 0; y < 3; ++y) {
  33. for (int x = 0; x < 3; ++x) {
  34. Assert.AreEqual(scale * expected.Get(x, y), scaled.Get(x, y),
  35. tolerance, string.Format("Index ({0} {1})", x, y));
  36. }
  37. }
  38. Assert.AreEqual(new FbxVector4(0,0,0,1), scaled.GetRow(3));
  39. Assert.AreEqual(new FbxVector4(0,0,0,1), scaled.GetColumn(3));
  40. }
  41. [Test]
  42. public void BasicTests ()
  43. {
  44. base.TestElementAccessAndDispose(new FbxAMatrix());
  45. // make sure the constructors compile and don't crash
  46. new FbxAMatrix();
  47. new FbxAMatrix(new FbxAMatrix());
  48. var mx = new FbxAMatrix(new FbxVector4(), new FbxVector4(), new FbxVector4(1,1,1));
  49. // check that the matrix is the id matrix
  50. Assert.IsTrue(mx.IsIdentity());
  51. for(int y = 0; y < 4; ++y) {
  52. for(int x = 0; x < 4; ++x) {
  53. Assert.AreEqual(x == y ? 1 : 0, mx.Get(y, x));
  54. }
  55. }
  56. // Test that all the operations work.
  57. // In particular, test that they don't return the default element
  58. // when they aren't supposed to.
  59. var translate = new FbxVector4(5, 3, 1);
  60. var euler = new FbxVector4(-135, -90, 0);
  61. var scale = new FbxVector4(1, 2, .5);
  62. var quat = new FbxQuaternion();
  63. quat.ComposeSphericalXYZ(euler);
  64. mx = new FbxAMatrix(translate, euler, scale);
  65. Assert.IsFalse(mx.IsIdentity());
  66. Assert.IsTrue(mx.IsIdentity(10)); // squint very, very, very hard
  67. FbxVector4Test.AssertSimilarXYZ(translate, mx.GetT());
  68. FbxVector4Test.AssertSimilarEuler(euler, mx.GetR());
  69. FbxQuaternionTest.AssertSimilar(quat, mx.GetQ());
  70. FbxVector4Test.AssertSimilarXYZ(scale, mx.GetS());
  71. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(0.354, 0.354, 0), mx.GetRow(2), 1e-2);
  72. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(1, 0, 0), mx.GetColumn(2));
  73. mx.SetT(translate * 2);
  74. FbxVector4Test.AssertSimilarXYZ(2 * translate, mx.GetT());
  75. mx.SetR(euler * 2);
  76. FbxVector4Test.AssertSimilarEuler(2 * euler, mx.GetR());
  77. mx.SetQ(quat * 2);
  78. FbxQuaternionTest.AssertSimilar(2 * quat, mx.GetQ());
  79. mx.SetS(scale * 2);
  80. FbxVector4Test.AssertSimilarXYZ(2 * scale, mx.GetS());
  81. mx.SetTRS(translate, euler, scale);
  82. FbxVector4Test.AssertSimilarXYZ(translate, mx.GetT());
  83. mx.SetTQS(2 * translate, 2 * quat, 2 * scale);
  84. FbxVector4Test.AssertSimilarXYZ(2 * translate, mx.GetT());
  85. // Test Inverse.
  86. var mxInv = mx.Inverse();
  87. Assert.AreNotEqual(mx.GetT(), mxInv.GetT());
  88. Assert.IsTrue((mx * mxInv).IsIdentity());
  89. // Test multiplying by a translation. Really we just want to make sure we got a result
  90. // different than doing nothing.
  91. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(17.778175, 2.464466, 4), mx.MultT(new FbxVector4(1,2,3)), 1e-5);
  92. // Test multiplying by a rotation.
  93. FbxVector4Test.AssertSimilarEuler(new FbxVector4(-180, 0, 45), mx.MultR(new FbxVector4(0, -90, 0)));
  94. quat.ComposeSphericalXYZ(new FbxVector4(0, -90, 0));
  95. quat = mx.MultQ(quat);
  96. var quatExpected = new FbxQuaternion();
  97. quatExpected.ComposeSphericalXYZ(new FbxVector4(-180, 0, 45));
  98. FbxQuaternionTest.AssertSimilar(quatExpected, quat);
  99. // Test multiplying a scale.
  100. FbxVector4Test.AssertSimilarXYZ(new FbxVector4(4, 6, .5), mx.MultS(new FbxVector4(2, 1.5, .5)));
  101. // Test scaling. Multiply/divide by powers of two so there's no roundoff.
  102. // The scale/rotate is scaled, the translation is cleared to (0,0,0,1).
  103. AssertScaled(mx, mx * 2, 2);
  104. AssertScaled(mx, 2 * mx, 2);
  105. AssertScaled(mx, mx / 2, 0.5);
  106. // Test negating. This is different from scaling by -1.
  107. using (var mxNegated = -mx) {
  108. for(int y = 0; y < 4; ++y) {
  109. for(int x = 0; x < 4; ++x) {
  110. Assert.AreEqual(-mx.Get(x, y), mxNegated.Get(x, y),
  111. string.Format("Index {0} {1}", x, y));
  112. }
  113. }
  114. }
  115. // Test transpose.
  116. using (var mxTranspose = mx.Transpose()) {
  117. for(int y = 0; y < 4; ++y) {
  118. for(int x = 0; x < 4; ++x) {
  119. Assert.AreEqual(mx.Get(y, x), mxTranspose.Get(x, y),
  120. string.Format("Index {0} {1}", x, y));
  121. }
  122. }
  123. }
  124. // Test setting to identity.
  125. mx.SetIdentity();
  126. Assert.IsTrue(mx.IsIdentity());
  127. // Slerp between two rotation matrices.
  128. var q1 = new FbxQuaternion(); q1.ComposeSphericalXYZ(new FbxVector4(0, -90, 0));
  129. var q2 = new FbxQuaternion(); q2.ComposeSphericalXYZ(new FbxVector4(0, 90, 0));
  130. var m1 = new FbxAMatrix(); m1.SetQ(q1);
  131. var m2 = new FbxAMatrix(); m2.SetQ(q2);
  132. var m12 = m1.Slerp(m2, 0.25);
  133. var q12 = new FbxQuaternion(); q12.ComposeSphericalXYZ(new FbxVector4(0, -45, 0));
  134. FbxQuaternionTest.AssertSimilar(q12, m12.GetQ());
  135. }
  136. }
  137. }