#ifndef UNITY_SPACE_TRANSFORMS_INCLUDED #define UNITY_SPACE_TRANSFORMS_INCLUDED // Return the PreTranslated ObjectToWorld Matrix (i.e matrix with _WorldSpaceCameraPos apply to it if we use camera relative rendering) float4x4 GetObjectToWorldMatrix() { return UNITY_MATRIX_M; } float4x4 GetWorldToObjectMatrix() { return UNITY_MATRIX_I_M; } float4x4 GetWorldToViewMatrix() { return UNITY_MATRIX_V; } // Transform to homogenous clip space float4x4 GetWorldToHClipMatrix() { return UNITY_MATRIX_VP; } // Transform to homogenous clip space float4x4 GetViewToHClipMatrix() { return UNITY_MATRIX_P; } // This function always return the absolute position in WS float3 GetAbsolutePositionWS(float3 positionRWS) { #if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0) positionRWS += _WorldSpaceCameraPos; #endif return positionRWS; } // This function return the camera relative position in WS float3 GetCameraRelativePositionWS(float3 positionWS) { #if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0) positionWS -= _WorldSpaceCameraPos; #endif return positionWS; } real GetOddNegativeScale() { return unity_WorldTransformParams.w; } float3 TransformObjectToWorld(float3 positionOS) { return mul(GetObjectToWorldMatrix(), float4(positionOS, 1.0)).xyz; } float3 TransformWorldToObject(float3 positionWS) { return mul(GetWorldToObjectMatrix(), float4(positionWS, 1.0)).xyz; } float3 TransformWorldToView(float3 positionWS) { return mul(GetWorldToViewMatrix(), float4(positionWS, 1.0)).xyz; } // Transforms position from object space to homogenous space float4 TransformObjectToHClip(float3 positionOS) { // More efficient than computing M*VP matrix product return mul(GetWorldToHClipMatrix(), mul(GetObjectToWorldMatrix(), float4(positionOS, 1.0))); } // Tranforms position from world space to homogenous space float4 TransformWorldToHClip(float3 positionWS) { return mul(GetWorldToHClipMatrix(), float4(positionWS, 1.0)); } // Tranforms position from view space to homogenous space float4 TransformWViewToHClip(float3 positionVS) { return mul(GetViewToHClipMatrix(), float4(positionVS, 1.0)); } real3 TransformObjectToWorldDir(real3 dirOS) { // Normalize to support uniform scaling return SafeNormalize(mul((real3x3)GetObjectToWorldMatrix(), dirOS)); } real3 TransformWorldToObjectDir(real3 dirWS) { // Normalize to support uniform scaling return normalize(mul((real3x3)GetWorldToObjectMatrix(), dirWS)); } real3 TransformWorldToViewDir(real3 dirWS) { return mul((real3x3)GetWorldToViewMatrix(), dirWS).xyz; } // Tranforms vector from world space to homogenous space real3 TransformWorldToHClipDir(real3 directionWS) { return mul((real3x3)GetWorldToHClipMatrix(), directionWS); } // Transforms normal from object to world space float3 TransformObjectToWorldNormal(float3 normalOS) { #ifdef UNITY_ASSUME_UNIFORM_SCALING return TransformObjectToWorldDir(normalOS); #else // Normal need to be multiply by inverse transpose return SafeNormalize(mul(normalOS, (float3x3)GetWorldToObjectMatrix())); #endif } // Transforms normal from world to object space float3 TransformWorldToObjectNormal(float3 normalWS) { #ifdef UNITY_ASSUME_UNIFORM_SCALING return TransformWorldToObjectDir(normalWS); #else // Normal need to be multiply by inverse transpose return SafeNormalize(mul(normalWS, (float3x3)GetObjectToWorldMatrix())); #endif } real3x3 CreateTangentToWorld(real3 normal, real3 tangent, real flipSign) { // For odd-negative scale transforms we need to flip the sign real sgn = flipSign * GetOddNegativeScale(); real3 bitangent = cross(normal, tangent) * sgn; return real3x3(tangent, bitangent, normal); } real3 TransformTangentToWorld(real3 dirTS, real3x3 tangentToWorld) { // Note matrix is in row major convention with left multiplication as it is build on the fly return mul(dirTS, tangentToWorld); } real3 TransformWorldToTangent(real3 dirWS, real3x3 tangentToWorld) { // Note matrix is in row major convention with left multiplication as it is build on the fly float3 row0 = tangentToWorld[0]; float3 row1 = tangentToWorld[1]; float3 row2 = tangentToWorld[2]; // these are the columns of the inverse matrix but scaled by the determinant float3 col0 = cross(row1, row2); float3 col1 = cross(row2, row0); float3 col2 = cross(row0, row1); float determinant = dot(row0, col0); float sgn = determinant<0.0 ? (-1.0) : 1.0; // inverse transposed but scaled by determinant real3x3 matTBN_I_T = real3x3(col0, col1, col2); // remove transpose part by using matrix as the first arg in mul() // this makes it the exact inverse of what TransformTangentToWorld() does. return SafeNormalize( sgn * mul(matTBN_I_T, dirWS) ); } real3 TransformTangentToObject(real3 dirTS, real3x3 tangentToWorld) { // Note matrix is in row major convention with left multiplication as it is build on the fly real3 normalWS = TransformTangentToWorld(dirTS, tangentToWorld); return TransformWorldToObjectNormal(normalWS); } real3 TransformObjectToTangent(real3 dirOS, real3x3 tangentToWorld) { // Note matrix is in row major convention with left multiplication as it is build on the fly float3 normalWS = TransformObjectToWorldNormal(dirOS); return TransformWorldToTangent(normalWS, tangentToWorld); } #endif