statistics.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include "statistics.h"
  6. #include <sstream>
  7. #include <SQLiteCpp/SQLiteCpp.h>
  8. #include "statistics_db.h"
  9. #include "statistics.h"
  10. #include "utilities.h"
  11. using namespace Tins;
  12. /**
  13. * Checks if there is a payload and increments payloads counter.
  14. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  15. */
  16. void statistics::checkPayload(const PDU *pdu_l4) {
  17. if(this->getDoExtraTests()) {
  18. // pdu_l4: Tarnsport layer 4
  19. int pktSize = pdu_l4->size();
  20. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  21. int payloadSize = pktSize - headerSize;
  22. if (payloadSize > 0)
  23. payloadCount++;
  24. }
  25. }
  26. /**
  27. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  28. * @param ipAddressSender The source IP.
  29. * @param ipAddressReceiver The destination IP.
  30. * @param tcpPkt The packet to get checked.
  31. */
  32. void statistics::checkTCPChecksum(std::string ipAddressSender, std::string ipAddressReceiver, TCP tcpPkt) {
  33. if(this->getDoExtraTests()) {
  34. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  35. correctTCPChecksumCount++;
  36. else incorrectTCPChecksumCount++;
  37. }
  38. }
  39. /**
  40. * Calculates entropy of the source and destination IPs in a time interval.
  41. * @param intervalStartTimestamp The timstamp where the interval starts.
  42. * @return a vector: contains source IP entropy and destination IP entropy.
  43. */
  44. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  45. if(this->getDoExtraTests()) {
  46. std::vector<int> IPsSrcPktsCounts;
  47. std::vector<int> IPsDstPktsCounts;
  48. std::vector<float> IPsSrcProb;
  49. std::vector<float> IPsDstProb;
  50. int pktsSent = 0, pktsReceived = 0;
  51. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  52. int IPsSrcPktsCount = 0;
  53. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  54. if(*j >= intervalStartTimestamp)
  55. IPsSrcPktsCount++;
  56. }
  57. if(IPsSrcPktsCount != 0) {
  58. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  59. pktsSent += IPsSrcPktsCount;
  60. }
  61. int IPsDstPktsCount = 0;
  62. for (auto j = i->second.pkts_received_timestamp.begin(); j != i->second.pkts_received_timestamp.end(); j++) {
  63. if(*j >= intervalStartTimestamp)
  64. IPsDstPktsCount++;
  65. }
  66. if(IPsDstPktsCount != 0) {
  67. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  68. pktsReceived += IPsDstPktsCount;
  69. }
  70. }
  71. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  72. IPsSrcProb.push_back((float) *i / pktsSent);
  73. }
  74. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  75. IPsDstProb.push_back((float) *i / pktsReceived);
  76. }
  77. // Calculate IP source entropy
  78. float IPsSrcEntropy = 0;
  79. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  80. if (IPsSrcProb[i] > 0)
  81. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  82. }
  83. // Calculate IP destination entropy
  84. float IPsDstEntropy = 0;
  85. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  86. if (IPsDstProb[i] > 0)
  87. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  88. }
  89. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  90. return entropies;
  91. }
  92. else {
  93. return {-1, -1};
  94. }
  95. }
  96. /**
  97. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  98. * @return a vector: contains the cumulative entropies of source and destination IPs
  99. */
  100. std::vector<float> statistics::calculateIPsCumEntropy(){
  101. if(this->getDoExtraTests()) {
  102. std::vector <std::string> IPs;
  103. std::vector <float> IPsSrcProb;
  104. std::vector <float> IPsDstProb;
  105. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  106. IPs.push_back(i->first);
  107. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  108. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  109. }
  110. // Calculate IP source entropy
  111. float IPsSrcEntropy = 0;
  112. for(unsigned i=0; i < IPsSrcProb.size();i++){
  113. if (IPsSrcProb[i] > 0)
  114. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  115. }
  116. // Calculate IP destination entropy
  117. float IPsDstEntropy = 0;
  118. for(unsigned i=0; i < IPsDstProb.size();i++){
  119. if (IPsDstProb[i] > 0)
  120. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  121. }
  122. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  123. return entropies;
  124. }
  125. else {
  126. return {-1, -1};
  127. }
  128. }
  129. /**
  130. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  131. * @param intervalStartTimestamp The timstamp where the interval starts.
  132. */
  133. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  134. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  135. int IPsSrcPktsCount = 0;
  136. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  137. if(*j >= intervalStartTimestamp)
  138. IPsSrcPktsCount++;
  139. }
  140. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  141. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  142. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  143. i->second.max_interval_pkt_rate = interval_pkt_rate;
  144. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  145. i->second.min_interval_pkt_rate = interval_pkt_rate;
  146. }
  147. }
  148. /**
  149. * Registers statistical data for a time interval.
  150. * @param intervalStartTimestamp The timstamp where the interval starts.
  151. * @param intervalEndTimestamp The timstamp where the interval ends.
  152. * @param previousPacketCount The total number of packets in last interval.
  153. */
  154. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  155. // Add packet rate for each IP to ip_statistics map
  156. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  157. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  158. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  159. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  160. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  161. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  162. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  163. interval_statistics[lastPktTimestamp_s].kbytes = (float(sumPacketSize - intervalCumSumPktSize) / 1024);
  164. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  165. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  166. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  167. interval_statistics[lastPktTimestamp_s].novel_ip_count = ip_statistics.size() - intervalCumNovelIPCount;
  168. interval_statistics[lastPktTimestamp_s].novel_ttl_count = ttl_values.size() - intervalCumNovelTTLCount;
  169. interval_statistics[lastPktTimestamp_s].novel_win_size_count = win_values.size() - intervalCumNovelWinSizeCount;
  170. interval_statistics[lastPktTimestamp_s].novel_tos_count = tos_values.size() - intervalCumNovelToSCount;
  171. interval_statistics[lastPktTimestamp_s].novel_mss_count = mss_values.size() - intervalCumNovelMSSCount;
  172. interval_statistics[lastPktTimestamp_s].novel_port_count = port_values.size() - intervalCumNovelPortCount;
  173. intervalPayloadCount = payloadCount;
  174. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  175. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  176. intervalCumPktCount = packetCount;
  177. intervalCumSumPktSize = sumPacketSize;
  178. intervalCumNovelIPCount = ip_statistics.size();
  179. intervalCumNovelTTLCount = ttl_values.size();
  180. intervalCumNovelWinSizeCount = win_values.size();
  181. intervalCumNovelToSCount = tos_values.size();
  182. intervalCumNovelMSSCount = mss_values.size();
  183. intervalCumNovelPortCount = port_values.size();
  184. if(ipEntopies.size()>1){
  185. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  186. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  187. }
  188. if(ipCumEntopies.size()>1){
  189. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  190. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  191. }
  192. }
  193. /**
  194. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  195. * Increments the counter packets_A_B or packets_B_A.
  196. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  197. * @param ipAddressSender The sender IP address.
  198. * @param sport The source port.
  199. * @param ipAddressReceiver The receiver IP address.
  200. * @param dport The destination port.
  201. * @param timestamp The timestamp of the packet.
  202. */
  203. void statistics::addConvStat(std::string ipAddressSender,int sport,std::string ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  204. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  205. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  206. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  207. if (conv_statistics.count(f1)>0){
  208. conv_statistics[f1].pkts_count++;
  209. if(conv_statistics[f1].pkts_count<=3)
  210. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  211. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  212. }
  213. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  214. else{
  215. conv_statistics[f2].pkts_count++;
  216. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  217. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  218. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  219. }
  220. }
  221. /**
  222. * Increments the packet counter for the given IP address and MSS value.
  223. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  224. * @param mssValue The MSS value of the packet.
  225. */
  226. void statistics::incrementMSScount(std::string ipAddress, int mssValue) {
  227. mss_values[mssValue]++;
  228. mss_distribution[{ipAddress, mssValue}]++;
  229. }
  230. /**
  231. * Increments the packet counter for the given IP address and window size.
  232. * @param ipAddress The IP address whose window size packet counter should be incremented.
  233. * @param winSize The window size of the packet.
  234. */
  235. void statistics::incrementWinCount(std::string ipAddress, int winSize) {
  236. win_values[winSize]++;
  237. win_distribution[{ipAddress, winSize}]++;
  238. }
  239. /**
  240. * Increments the packet counter for the given IP address and TTL value.
  241. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  242. * @param ttlValue The TTL value of the packet.
  243. */
  244. void statistics::incrementTTLcount(std::string ipAddress, int ttlValue) {
  245. ttl_values[ttlValue]++;
  246. ttl_distribution[{ipAddress, ttlValue}]++;
  247. }
  248. /**
  249. * Increments the packet counter for the given IP address and ToS value.
  250. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  251. * @param tosValue The ToS value of the packet.
  252. */
  253. void statistics::incrementToScount(std::string ipAddress, int tosValue) {
  254. tos_values[tosValue]++;
  255. tos_distribution[{ipAddress, tosValue}]++;
  256. }
  257. /**
  258. * Increments the protocol counter for the given IP address and protocol.
  259. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  260. * @param protocol The protocol of the packet.
  261. */
  262. void statistics::incrementProtocolCount(std::string ipAddress, std::string protocol) {
  263. protocol_distribution[{ipAddress, protocol}]++;
  264. }
  265. /**
  266. * Returns the number of packets seen for the given IP address and protocol.
  267. * @param ipAddress The IP address whose packet count is wanted.
  268. * @param protocol The protocol whose packet count is wanted.
  269. * @return an integer: the number of packets
  270. */
  271. int statistics::getProtocolCount(std::string ipAddress, std::string protocol) {
  272. return protocol_distribution[{ipAddress, protocol}];
  273. }
  274. /**
  275. * Increments the packet counter for
  276. * - the given sender IP address with outgoing port and
  277. * - the given receiver IP address with incoming port.
  278. * @param ipAddressSender The IP address of the packet sender.
  279. * @param outgoingPort The port used by the sender.
  280. * @param ipAddressReceiver The IP address of the packet receiver.
  281. * @param incomingPort The port used by the receiver.
  282. */
  283. void statistics::incrementPortCount(std::string ipAddressSender, int outgoingPort, std::string ipAddressReceiver,
  284. int incomingPort) {
  285. port_values[outgoingPort]++;
  286. port_values[incomingPort]++;
  287. ip_ports[{ipAddressSender, "out", outgoingPort}]++;
  288. ip_ports[{ipAddressReceiver, "in", incomingPort}]++;
  289. }
  290. /**
  291. * Creates a new statistics object.
  292. */
  293. statistics::statistics(void) {
  294. }
  295. /**
  296. * Stores the assignment IP address -> MAC address.
  297. * @param ipAddress The IP address belonging to the given MAC address.
  298. * @param macAddress The MAC address belonging to the given IP address.
  299. */
  300. void statistics::assignMacAddress(std::string ipAddress, std::string macAddress) {
  301. ip_mac_mapping[ipAddress] = macAddress;
  302. }
  303. /**
  304. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  305. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  306. * @param ipAddressSender The IP address of the packet sender.
  307. * @param ipAddressReceiver The IP address of the packet receiver.
  308. * @param bytesSent The packet's size.
  309. */
  310. void statistics::addIpStat_packetSent(std::string filePath, std::string ipAddressSender, std::string ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  311. // Adding IP as a sender for first time
  312. if(ip_statistics[ipAddressSender].pkts_sent==0){
  313. // Add the IP class
  314. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  315. }
  316. // Adding IP as a receiver for first time
  317. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  318. // Add the IP class
  319. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  320. }
  321. // Update stats for packet sender
  322. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  323. ip_statistics[ipAddressSender].pkts_sent++;
  324. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  325. // Update stats for packet receiver
  326. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  327. ip_statistics[ipAddressReceiver].pkts_received++;
  328. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  329. }
  330. /**
  331. * Setter for the timestamp_firstPacket field.
  332. * @param ts The timestamp of the first packet in the PCAP file.
  333. */
  334. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  335. timestamp_firstPacket = ts;
  336. }
  337. /**
  338. * Setter for the timestamp_lastPacket field.
  339. * @param ts The timestamp of the last packet in the PCAP file.
  340. */
  341. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  342. timestamp_lastPacket = ts;
  343. }
  344. /**
  345. * Getter for the timestamp_firstPacket field.
  346. */
  347. Tins::Timestamp statistics::getTimestampFirstPacket() {
  348. return timestamp_firstPacket;
  349. }
  350. /**
  351. * Getter for the timestamp_lastPacket field.
  352. */
  353. Tins::Timestamp statistics::getTimestampLastPacket() {
  354. return timestamp_lastPacket;
  355. }
  356. /**
  357. * Getter for the packetCount field.
  358. */
  359. int statistics::getPacketCount() {
  360. return packetCount;
  361. }
  362. /**
  363. * Getter for the sumPacketSize field.
  364. */
  365. int statistics::getSumPacketSize() {
  366. return sumPacketSize;
  367. }
  368. /**
  369. * Returns the average packet size.
  370. * @return a float indicating the average packet size in kbytes.
  371. */
  372. float statistics::getAvgPacketSize() const {
  373. // AvgPktSize = (Sum of all packet sizes / #Packets)
  374. return (sumPacketSize / packetCount) / 1024;
  375. }
  376. /**
  377. * Adds the size of a packet (to be used to calculate the avg. packet size).
  378. * @param packetSize The size of the current packet in bytes.
  379. */
  380. void statistics::addPacketSize(uint32_t packetSize) {
  381. sumPacketSize += ((float) packetSize);
  382. }
  383. /**
  384. * Setter for the doExtraTests field.
  385. */
  386. void statistics::setDoExtraTests(bool var) {
  387. doExtraTests = var;
  388. }
  389. /**
  390. * Getter for the doExtraTests field.
  391. */
  392. bool statistics::getDoExtraTests() {
  393. return doExtraTests;
  394. }
  395. /**
  396. * Calculates the capture duration.
  397. * @return a formatted string HH:MM:SS.mmmmmm with
  398. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  399. */
  400. std::string statistics::getCaptureDurationTimestamp() const {
  401. // Calculate duration
  402. time_t t = (timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds());
  403. time_t ms = (timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds());
  404. long int hour = t / 3600;
  405. long int remainder = (t - hour * 3600);
  406. long int minute = remainder / 60;
  407. long int second = (remainder - minute * 60) % 60;
  408. long int microseconds = ms;
  409. // Build desired output format: YYYY-mm-dd hh:mm:ss
  410. char out[64];
  411. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  412. return std::string(out);
  413. }
  414. /**
  415. * Calculates the capture duration.
  416. * @return a formatted string SS.mmmmmm with
  417. * S: seconds (UNIX time), mmmmmm: microseconds
  418. */
  419. float statistics::getCaptureDurationSeconds() const {
  420. timeval d;
  421. d.tv_sec = timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds();
  422. d.tv_usec = timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds();
  423. char tmbuf[64], buf[64];
  424. auto nowtm = localtime(&(d.tv_sec));
  425. strftime(tmbuf, sizeof(tmbuf), "%S", nowtm);
  426. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) d.tv_usec);
  427. return std::stof(std::string(buf));
  428. }
  429. /**
  430. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  431. * @param seconds
  432. * @param microseconds
  433. * @return a formatted string Y-m-d H:M:S.m with
  434. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  435. */
  436. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  437. timeval tv;
  438. tv.tv_sec = seconds;
  439. tv.tv_usec = microseconds;
  440. char tmbuf[64], buf[64];
  441. auto nowtm = localtime(&(tv.tv_sec));
  442. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  443. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) tv.tv_usec);
  444. return std::string(buf);
  445. }
  446. /**
  447. * Calculates the statistics for a given IP address.
  448. * @param ipAddress The IP address whose statistics should be calculated.
  449. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  450. */
  451. ip_stats statistics::getStatsForIP(std::string ipAddress) {
  452. float duration = getCaptureDurationSeconds();
  453. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  454. ip_stats s;
  455. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  456. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  457. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  458. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  459. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  460. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  461. return s;
  462. }
  463. /**
  464. * Increments the packet counter.
  465. */
  466. void statistics::incrementPacketCount() {
  467. packetCount++;
  468. }
  469. /**
  470. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  471. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  472. */
  473. void statistics::printStats(std::string ipAddress) {
  474. std::stringstream ss;
  475. ss << std::endl;
  476. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  477. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  478. ss << "#Packets: " << packetCount << std::endl;
  479. ss << std::endl;
  480. // Print IP address specific statistics only if IP address was given
  481. if (ipAddress != "") {
  482. entry_ipStat e = ip_statistics[ipAddress];
  483. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  484. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  485. ss << "KBytes received: " << e.kbytes_received << std::endl;
  486. ss << "Packets sent: " << e.pkts_sent << std::endl;
  487. ss << "Packets received: " << e.pkts_received << "\n\n";
  488. ip_stats is = getStatsForIP(ipAddress);
  489. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  490. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  491. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  492. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  493. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  494. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  495. }
  496. std::cout << ss.str();
  497. }
  498. /**
  499. * Derives general PCAP file statistics from the collected statistical data and
  500. * writes all data into a SQLite database, located at database_path.
  501. * @param database_path The path of the SQLite database file ending with .sqlite3.
  502. */
  503. void statistics::writeToDatabase(std::string database_path) {
  504. // Generate general file statistics
  505. float duration = getCaptureDurationSeconds();
  506. long sumPacketsSent = 0, senderCountIP = 0;
  507. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  508. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  509. sumPacketsSent += i->second.pkts_sent;
  510. // Consumed bandwith (bytes) for sending packets
  511. sumBandwidthIn += (i->second.kbytes_received / duration);
  512. sumBandwidthOut += (i->second.kbytes_sent / duration);
  513. senderCountIP++;
  514. }
  515. float avgPacketRate = (packetCount / duration);
  516. long avgPacketSize = getAvgPacketSize();
  517. if(senderCountIP>0) {
  518. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  519. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  520. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  521. // Create database and write information
  522. statistics_db db(database_path);
  523. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  524. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  525. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  526. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  527. avgBandwidthOutInKBits);
  528. db.writeStatisticsIP(ip_statistics);
  529. db.writeStatisticsTTL(ttl_distribution);
  530. db.writeStatisticsIpMac(ip_mac_mapping);
  531. db.writeStatisticsPorts(ip_ports);
  532. db.writeStatisticsProtocols(protocol_distribution);
  533. db.writeStatisticsMSS(mss_distribution);
  534. db.writeStatisticsToS(tos_distribution);
  535. db.writeStatisticsWin(win_distribution);
  536. db.writeStatisticsConv(conv_statistics);
  537. db.writeStatisticsInterval(interval_statistics);
  538. }
  539. else {
  540. // Tinslib failed to recognize the types of the packets in the input PCAP
  541. std::cout<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  542. return;
  543. }
  544. }