statistics.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include <sstream>
  6. #include <SQLiteCpp/SQLiteCpp.h>
  7. #include "statistics_db.h"
  8. #include "statistics.h"
  9. #include "utilities.h"
  10. using namespace Tins;
  11. /**
  12. * Checks if there is a payload and increments payloads counter.
  13. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  14. */
  15. void statistics::checkPayload(const PDU *pdu_l4) {
  16. if(this->getDoExtraTests()) {
  17. // pdu_l4: Tarnsport layer 4
  18. int pktSize = pdu_l4->size();
  19. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  20. int payloadSize = pktSize - headerSize;
  21. if (payloadSize > 0)
  22. payloadCount++;
  23. }
  24. }
  25. /**
  26. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  27. * @param ipAddressSender The source IP.
  28. * @param ipAddressReceiver The destination IP.
  29. * @param tcpPkt The packet to get checked.
  30. */
  31. void statistics::checkTCPChecksum(std::string ipAddressSender, std::string ipAddressReceiver, TCP tcpPkt) {
  32. if(this->getDoExtraTests()) {
  33. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  34. correctTCPChecksumCount++;
  35. else incorrectTCPChecksumCount++;
  36. }
  37. }
  38. /**
  39. * Calculates entropy of the source and destination IPs in a time interval.
  40. * @param intervalStartTimestamp The timstamp where the interval starts.
  41. * @return a vector: contains source IP entropy and destination IP entropy.
  42. */
  43. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  44. if(this->getDoExtraTests()) {
  45. std::vector<int> IPsSrcPktsCounts;
  46. std::vector<int> IPsDstPktsCounts;
  47. std::vector<float> IPsSrcProb;
  48. std::vector<float> IPsDstProb;
  49. int pktsSent = 0, pktsReceived = 0;
  50. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  51. int indexStartSent = getClosestIndex(i->second.pkts_sent_timestamp, intervalStartTimestamp);
  52. int IPsSrcPktsCount = i->second.pkts_sent_timestamp.size() - indexStartSent;
  53. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  54. pktsSent += IPsSrcPktsCount;
  55. int indexStartReceived = getClosestIndex(i->second.pkts_received_timestamp, intervalStartTimestamp);
  56. int IPsDstPktsCount = i->second.pkts_received_timestamp.size() - indexStartReceived;
  57. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  58. pktsReceived += IPsDstPktsCount;
  59. }
  60. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  61. IPsSrcProb.push_back((float) *i / pktsSent);
  62. }
  63. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  64. IPsDstProb.push_back((float) *i / pktsReceived);
  65. }
  66. // Calculate IP source entropy
  67. float IPsSrcEntropy = 0;
  68. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  69. if (IPsSrcProb[i] > 0)
  70. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  71. }
  72. // Calculate IP destination entropy
  73. float IPsDstEntropy = 0;
  74. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  75. if (IPsDstProb[i] > 0)
  76. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  77. }
  78. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  79. return entropies;
  80. }
  81. else {
  82. return {-1, -1};
  83. }
  84. }
  85. /**
  86. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  87. * @return a vector: contains the cumulative entropies of source and destination IPs
  88. */
  89. std::vector<float> statistics::calculateIPsCumEntropy(){
  90. if(this->getDoExtraTests()) {
  91. std::vector <std::string> IPs;
  92. std::vector <float> IPsSrcProb;
  93. std::vector <float> IPsDstProb;
  94. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  95. IPs.push_back(i->first);
  96. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  97. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  98. }
  99. // Calculate IP source entropy
  100. float IPsSrcEntropy = 0;
  101. for(unsigned i=0; i < IPsSrcProb.size();i++){
  102. if (IPsSrcProb[i] > 0)
  103. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  104. }
  105. // Calculate IP destination entropy
  106. float IPsDstEntropy = 0;
  107. for(unsigned i=0; i < IPsDstProb.size();i++){
  108. if (IPsDstProb[i] > 0)
  109. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  110. }
  111. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  112. return entropies;
  113. }
  114. else {
  115. return {-1, -1};
  116. }
  117. }
  118. /**
  119. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  120. * @param intervalStartTimestamp The timstamp where the interval starts.
  121. */
  122. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  123. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  124. int indexStartSent = getClosestIndex(i->second.pkts_sent_timestamp, intervalStartTimestamp);
  125. int IPsSrcPktsCount = i->second.pkts_sent_timestamp.size() - indexStartSent;
  126. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  127. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  128. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  129. i->second.max_interval_pkt_rate = interval_pkt_rate;
  130. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  131. i->second.min_interval_pkt_rate = interval_pkt_rate;
  132. }
  133. }
  134. /**
  135. * Registers statistical data for a time interval.
  136. * @param intervalStartTimestamp The timstamp where the interval starts.
  137. * @param intervalEndTimestamp The timstamp where the interval ends.
  138. * @param previousPacketCount The total number of packets in last interval.
  139. */
  140. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  141. // Add packet rate for each IP to ip_statistics map
  142. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  143. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  144. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  145. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  146. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  147. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  148. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  149. interval_statistics[lastPktTimestamp_s].kbytes = (float(sumPacketSize - intervalCumSumPktSize) / 1024);
  150. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  151. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  152. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  153. interval_statistics[lastPktTimestamp_s].novel_ip_count = ip_statistics.size() - intervalCumNewIPCount;
  154. interval_statistics[lastPktTimestamp_s].novel_ttl_count = ttl_values.size() - intervalCumNewTTLCount;
  155. interval_statistics[lastPktTimestamp_s].novel_win_size_count = win_values.size() - intervalCumNewWinSizeCount;
  156. interval_statistics[lastPktTimestamp_s].novel_tos_count = tos_values.size() - intervalCumNewToSCount;
  157. interval_statistics[lastPktTimestamp_s].novel_mss_count = mss_values.size() - intervalCumNewMSSCount;
  158. intervalPayloadCount = payloadCount;
  159. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  160. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  161. intervalCumPktCount = packetCount;
  162. intervalCumSumPktSize = sumPacketSize;
  163. intervalCumNewIPCount = ip_statistics.size();
  164. intervalCumNewTTLCount = ttl_values.size();
  165. intervalCumNewWinSizeCount = win_values.size();
  166. intervalCumNewToSCount = tos_values.size();
  167. intervalCumNewMSSCount = mss_values.size();
  168. if(ipEntopies.size()>1){
  169. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  170. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  171. }
  172. if(ipCumEntopies.size()>1){
  173. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  174. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  175. }
  176. }
  177. /**
  178. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  179. * Increments the counter packets_A_B or packets_B_A.
  180. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  181. * @param ipAddressSender The sender IP address.
  182. * @param sport The source port.
  183. * @param ipAddressReceiver The receiver IP address.
  184. * @param dport The destination port.
  185. * @param timestamp The timestamp of the packet.
  186. */
  187. void statistics::addConvStat(std::string ipAddressSender,int sport,std::string ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  188. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  189. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  190. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  191. if (conv_statistics.count(f1)>0){
  192. conv_statistics[f1].pkts_count++;
  193. if(conv_statistics[f1].pkts_count<=3)
  194. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  195. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  196. }
  197. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  198. else{
  199. conv_statistics[f2].pkts_count++;
  200. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  201. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  202. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  203. }
  204. }
  205. /**
  206. * Increments the packet counter for the given IP address and MSS value.
  207. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  208. * @param mssValue The MSS value of the packet.
  209. */
  210. void statistics::incrementMSScount(std::string ipAddress, int mssValue) {
  211. mss_values[mssValue]++;
  212. mss_distribution[{ipAddress, mssValue}]++;
  213. }
  214. /**
  215. * Increments the packet counter for the given IP address and window size.
  216. * @param ipAddress The IP address whose window size packet counter should be incremented.
  217. * @param winSize The window size of the packet.
  218. */
  219. void statistics::incrementWinCount(std::string ipAddress, int winSize) {
  220. win_values[winSize]++;
  221. win_distribution[{ipAddress, winSize}]++;
  222. }
  223. /**
  224. * Increments the packet counter for the given IP address and TTL value.
  225. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  226. * @param ttlValue The TTL value of the packet.
  227. */
  228. void statistics::incrementTTLcount(std::string ipAddress, int ttlValue) {
  229. ttl_values[ttlValue]++;
  230. ttl_distribution[{ipAddress, ttlValue}]++;
  231. }
  232. /**
  233. * Increments the packet counter for the given IP address and ToS value.
  234. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  235. * @param tosValue The ToS value of the packet.
  236. */
  237. void statistics::incrementToScount(std::string ipAddress, int tosValue) {
  238. tos_values[tosValue]++;
  239. tos_distribution[{ipAddress, tosValue}]++;
  240. }
  241. /**
  242. * Increments the protocol counter for the given IP address and protocol.
  243. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  244. * @param protocol The protocol of the packet.
  245. */
  246. void statistics::incrementProtocolCount(std::string ipAddress, std::string protocol) {
  247. protocol_distribution[{ipAddress, protocol}]++;
  248. }
  249. /**
  250. * Returns the number of packets seen for the given IP address and protocol.
  251. * @param ipAddress The IP address whose packet count is wanted.
  252. * @param protocol The protocol whose packet count is wanted.
  253. * @return an integer: the number of packets
  254. */
  255. int statistics::getProtocolCount(std::string ipAddress, std::string protocol) {
  256. return protocol_distribution[{ipAddress, protocol}];
  257. }
  258. /**
  259. * Increments the packet counter for
  260. * - the given sender IP address with outgoing port and
  261. * - the given receiver IP address with incoming port.
  262. * @param ipAddressSender The IP address of the packet sender.
  263. * @param outgoingPort The port used by the sender.
  264. * @param ipAddressReceiver The IP address of the packet receiver.
  265. * @param incomingPort The port used by the receiver.
  266. */
  267. void statistics::incrementPortCount(std::string ipAddressSender, int outgoingPort, std::string ipAddressReceiver,
  268. int incomingPort) {
  269. ip_ports[{ipAddressSender, "out", outgoingPort}]++;
  270. ip_ports[{ipAddressReceiver, "in", incomingPort}]++;
  271. }
  272. /**
  273. * Creates a new statistics object.
  274. */
  275. statistics::statistics(void) {
  276. }
  277. /**
  278. * Stores the assignment IP address -> MAC address.
  279. * @param ipAddress The IP address belonging to the given MAC address.
  280. * @param macAddress The MAC address belonging to the given IP address.
  281. */
  282. void statistics::assignMacAddress(std::string ipAddress, std::string macAddress) {
  283. ip_mac_mapping[ipAddress] = macAddress;
  284. }
  285. /**
  286. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  287. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  288. * @param ipAddressSender The IP address of the packet sender.
  289. * @param ipAddressReceiver The IP address of the packet receiver.
  290. * @param bytesSent The packet's size.
  291. */
  292. void statistics::addIpStat_packetSent(std::string filePath, std::string ipAddressSender, std::string ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  293. // Aidmar - Adding IP as a sender for first time
  294. if(ip_statistics[ipAddressSender].pkts_sent==0){
  295. // Add the IP class
  296. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  297. }
  298. // Aidmar - Adding IP as a receiver for first time
  299. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  300. // Add the IP class
  301. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  302. }
  303. // Update stats for packet sender
  304. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  305. ip_statistics[ipAddressSender].pkts_sent++;
  306. // Aidmar
  307. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  308. // Update stats for packet receiver
  309. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  310. ip_statistics[ipAddressReceiver].pkts_received++;
  311. // Aidmar
  312. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  313. }
  314. /**
  315. * Setter for the timestamp_firstPacket field.
  316. * @param ts The timestamp of the first packet in the PCAP file.
  317. */
  318. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  319. timestamp_firstPacket = ts;
  320. }
  321. /**
  322. * Setter for the timestamp_lastPacket field.
  323. * @param ts The timestamp of the last packet in the PCAP file.
  324. */
  325. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  326. timestamp_lastPacket = ts;
  327. }
  328. /**
  329. * Getter for the timestamp_firstPacket field.
  330. */
  331. Tins::Timestamp statistics::getTimestampFirstPacket() {
  332. return timestamp_firstPacket;
  333. }
  334. /**
  335. * Getter for the timestamp_lastPacket field.
  336. */
  337. Tins::Timestamp statistics::getTimestampLastPacket() {
  338. return timestamp_lastPacket;
  339. }
  340. /**
  341. * Getter for the packetCount field.
  342. */
  343. int statistics::getPacketCount() {
  344. return packetCount;
  345. }
  346. /**
  347. * Getter for the sumPacketSize field.
  348. */
  349. int statistics::getSumPacketSize() {
  350. return sumPacketSize;
  351. }
  352. /**
  353. * Returns the average packet size.
  354. * @return a float indicating the average packet size in kbytes.
  355. */
  356. float statistics::getAvgPacketSize() const {
  357. // AvgPktSize = (Sum of all packet sizes / #Packets)
  358. return (sumPacketSize / packetCount) / 1024;
  359. }
  360. /**
  361. * Adds the size of a packet (to be used to calculate the avg. packet size).
  362. * @param packetSize The size of the current packet in bytes.
  363. */
  364. void statistics::addPacketSize(uint32_t packetSize) {
  365. sumPacketSize += ((float) packetSize);
  366. }
  367. /**
  368. * Setter for the doExtraTests field.
  369. */
  370. void statistics::setDoExtraTests(bool var) {
  371. doExtraTests = var;
  372. }
  373. /**
  374. * Getter for the doExtraTests field.
  375. */
  376. bool statistics::getDoExtraTests() {
  377. return doExtraTests;
  378. }
  379. /**
  380. * Calculates the capture duration.
  381. * @return a formatted string HH:MM:SS.mmmmmm with
  382. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  383. */
  384. std::string statistics::getCaptureDurationTimestamp() const {
  385. // Calculate duration
  386. time_t t = (timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds());
  387. time_t ms = (timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds());
  388. long int hour = t / 3600;
  389. long int remainder = (t - hour * 3600);
  390. long int minute = remainder / 60;
  391. long int second = (remainder - minute * 60) % 60;
  392. long int microseconds = ms;
  393. // Build desired output format: YYYY-mm-dd hh:mm:ss
  394. char out[64];
  395. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  396. return std::string(out);
  397. }
  398. /**
  399. * Calculates the capture duration.
  400. * @return a formatted string SS.mmmmmm with
  401. * S: seconds (UNIX time), mmmmmm: microseconds
  402. */
  403. float statistics::getCaptureDurationSeconds() const {
  404. timeval d;
  405. d.tv_sec = timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds();
  406. d.tv_usec = timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds();
  407. char tmbuf[64], buf[64];
  408. auto nowtm = localtime(&(d.tv_sec));
  409. strftime(tmbuf, sizeof(tmbuf), "%S", nowtm);
  410. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) d.tv_usec);
  411. return std::stof(std::string(buf));
  412. }
  413. /**
  414. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  415. * @param seconds
  416. * @param microseconds
  417. * @return a formatted string Y-m-d H:M:S.m with
  418. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  419. */
  420. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  421. timeval tv;
  422. tv.tv_sec = seconds;
  423. tv.tv_usec = microseconds;
  424. char tmbuf[64], buf[64];
  425. auto nowtm = localtime(&(tv.tv_sec));
  426. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  427. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) tv.tv_usec);
  428. return std::string(buf);
  429. }
  430. /**
  431. * Calculates the statistics for a given IP address.
  432. * @param ipAddress The IP address whose statistics should be calculated.
  433. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  434. */
  435. ip_stats statistics::getStatsForIP(std::string ipAddress) {
  436. float duration = getCaptureDurationSeconds();
  437. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  438. ip_stats s;
  439. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  440. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  441. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  442. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  443. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  444. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  445. return s;
  446. }
  447. /**
  448. * Increments the packet counter.
  449. */
  450. void statistics::incrementPacketCount() {
  451. packetCount++;
  452. }
  453. /**
  454. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  455. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  456. */
  457. void statistics::printStats(std::string ipAddress) {
  458. std::stringstream ss;
  459. ss << std::endl;
  460. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  461. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  462. ss << "#Packets: " << packetCount << std::endl;
  463. ss << std::endl;
  464. // Print IP address specific statistics only if IP address was given
  465. if (ipAddress != "") {
  466. entry_ipStat e = ip_statistics[ipAddress];
  467. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  468. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  469. ss << "KBytes received: " << e.kbytes_received << std::endl;
  470. ss << "Packets sent: " << e.pkts_sent << std::endl;
  471. ss << "Packets received: " << e.pkts_received << "\n\n";
  472. ip_stats is = getStatsForIP(ipAddress);
  473. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  474. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  475. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  476. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  477. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  478. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  479. }
  480. std::cout << ss.str();
  481. }
  482. /**
  483. * Derives general PCAP file statistics from the collected statistical data and
  484. * writes all data into a SQLite database, located at database_path.
  485. * @param database_path The path of the SQLite database file ending with .sqlite3.
  486. */
  487. void statistics::writeToDatabase(std::string database_path) {
  488. // Generate general file statistics
  489. float duration = getCaptureDurationSeconds();
  490. long sumPacketsSent = 0, senderCountIP = 0;
  491. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  492. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  493. sumPacketsSent += i->second.pkts_sent;
  494. // Consumed bandwith (bytes) for sending packets
  495. sumBandwidthIn += (i->second.kbytes_received / duration);
  496. sumBandwidthOut += (i->second.kbytes_sent / duration);
  497. senderCountIP++;
  498. }
  499. float avgPacketRate = (packetCount / duration);
  500. long avgPacketSize = getAvgPacketSize();
  501. if(senderCountIP>0) {
  502. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  503. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  504. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  505. // Create database and write information
  506. statistics_db db(database_path);
  507. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  508. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  509. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  510. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  511. avgBandwidthOutInKBits);
  512. db.writeStatisticsIP(ip_statistics);
  513. db.writeStatisticsTTL(ttl_distribution);
  514. db.writeStatisticsIpMac(ip_mac_mapping);
  515. db.writeStatisticsPorts(ip_ports);
  516. db.writeStatisticsProtocols(protocol_distribution);
  517. db.writeStatisticsMSS(mss_distribution);
  518. db.writeStatisticsToS(tos_distribution);
  519. db.writeStatisticsWin(win_distribution);
  520. db.writeStatisticsConv(conv_statistics);
  521. db.writeStatisticsInterval(interval_statistics);
  522. }
  523. else {
  524. // Tinslib failed to recognize the types of the packets in the input PCAP
  525. std::cout<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  526. return;
  527. }
  528. }