statistics.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include "statistics.h"
  6. #include <sstream>
  7. #include <SQLiteCpp/SQLiteCpp.h>
  8. #include "statistics_db.h"
  9. #include "statistics.h"
  10. #include "utilities.h"
  11. using namespace Tins;
  12. /**
  13. * Checks if there is a payload and increments payloads counter.
  14. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  15. */
  16. void statistics::checkPayload(const PDU *pdu_l4) {
  17. if(this->getDoExtraTests()) {
  18. // pdu_l4: Tarnsport layer 4
  19. int pktSize = pdu_l4->size();
  20. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  21. int payloadSize = pktSize - headerSize;
  22. if (payloadSize > 0)
  23. payloadCount++;
  24. }
  25. }
  26. /**
  27. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  28. * @param ipAddressSender The source IP.
  29. * @param ipAddressReceiver The destination IP.
  30. * @param tcpPkt The packet to get checked.
  31. */
  32. void statistics::checkTCPChecksum(std::string ipAddressSender, std::string ipAddressReceiver, TCP tcpPkt) {
  33. if(this->getDoExtraTests()) {
  34. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  35. correctTCPChecksumCount++;
  36. else incorrectTCPChecksumCount++;
  37. }
  38. }
  39. /**
  40. * Calculates entropy of the source and destination IPs in a time interval.
  41. * @param intervalStartTimestamp The timstamp where the interval starts.
  42. * @return a vector: contains source IP entropy and destination IP entropy.
  43. */
  44. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  45. if(this->getDoExtraTests()) {
  46. std::vector<int> IPsSrcPktsCounts;
  47. std::vector<int> IPsDstPktsCounts;
  48. std::vector<float> IPsSrcProb;
  49. std::vector<float> IPsDstProb;
  50. int pktsSent = 0, pktsReceived = 0;
  51. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  52. int IPsSrcPktsCount = 0;
  53. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  54. if(*j >= intervalStartTimestamp)
  55. IPsSrcPktsCount++;
  56. }
  57. if(IPsSrcPktsCount != 0) {
  58. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  59. pktsSent += IPsSrcPktsCount;
  60. }
  61. int IPsDstPktsCount = 0;
  62. for (auto j = i->second.pkts_received_timestamp.begin(); j != i->second.pkts_received_timestamp.end(); j++) {
  63. if(*j >= intervalStartTimestamp)
  64. IPsDstPktsCount++;
  65. }
  66. if(IPsDstPktsCount != 0) {
  67. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  68. pktsReceived += IPsDstPktsCount;
  69. }
  70. }
  71. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  72. IPsSrcProb.push_back((float) *i / pktsSent);
  73. }
  74. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  75. IPsDstProb.push_back((float) *i / pktsReceived);
  76. }
  77. // Calculate IP source entropy
  78. float IPsSrcEntropy = 0;
  79. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  80. if (IPsSrcProb[i] > 0)
  81. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  82. }
  83. // Calculate IP destination entropy
  84. float IPsDstEntropy = 0;
  85. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  86. if (IPsDstProb[i] > 0)
  87. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  88. }
  89. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  90. return entropies;
  91. }
  92. else {
  93. return {-1, -1};
  94. }
  95. }
  96. /**
  97. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  98. * @return a vector: contains the cumulative entropies of source and destination IPs
  99. */
  100. std::vector<float> statistics::calculateIPsCumEntropy(){
  101. if(this->getDoExtraTests()) {
  102. std::vector <std::string> IPs;
  103. std::vector <float> IPsSrcProb;
  104. std::vector <float> IPsDstProb;
  105. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  106. IPs.push_back(i->first);
  107. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  108. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  109. }
  110. // Calculate IP source entropy
  111. float IPsSrcEntropy = 0;
  112. for(unsigned i=0; i < IPsSrcProb.size();i++){
  113. if (IPsSrcProb[i] > 0)
  114. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  115. }
  116. // Calculate IP destination entropy
  117. float IPsDstEntropy = 0;
  118. for(unsigned i=0; i < IPsDstProb.size();i++){
  119. if (IPsDstProb[i] > 0)
  120. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  121. }
  122. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  123. return entropies;
  124. }
  125. else {
  126. return {-1, -1};
  127. }
  128. }
  129. /**
  130. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  131. * @param intervalStartTimestamp The timstamp where the interval starts.
  132. */
  133. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  134. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  135. int indexStartSent = getClosestIndex(i->second.pkts_sent_timestamp, intervalStartTimestamp);
  136. int IPsSrcPktsCount = i->second.pkts_sent_timestamp.size() - indexStartSent;
  137. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  138. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  139. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  140. i->second.max_interval_pkt_rate = interval_pkt_rate;
  141. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  142. i->second.min_interval_pkt_rate = interval_pkt_rate;
  143. }
  144. }
  145. /**
  146. * Registers statistical data for a time interval.
  147. * @param intervalStartTimestamp The timstamp where the interval starts.
  148. * @param intervalEndTimestamp The timstamp where the interval ends.
  149. * @param previousPacketCount The total number of packets in last interval.
  150. */
  151. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  152. // Add packet rate for each IP to ip_statistics map
  153. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  154. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  155. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  156. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  157. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  158. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  159. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  160. interval_statistics[lastPktTimestamp_s].kbytes = (float(sumPacketSize - intervalCumSumPktSize) / 1024);
  161. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  162. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  163. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  164. interval_statistics[lastPktTimestamp_s].novel_ip_count = ip_statistics.size() - intervalCumNewIPCount;
  165. interval_statistics[lastPktTimestamp_s].novel_ttl_count = ttl_values.size() - intervalCumNewTTLCount;
  166. interval_statistics[lastPktTimestamp_s].novel_win_size_count = win_values.size() - intervalCumNewWinSizeCount;
  167. interval_statistics[lastPktTimestamp_s].novel_tos_count = tos_values.size() - intervalCumNewToSCount;
  168. interval_statistics[lastPktTimestamp_s].novel_mss_count = mss_values.size() - intervalCumNewMSSCount;
  169. intervalPayloadCount = payloadCount;
  170. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  171. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  172. intervalCumPktCount = packetCount;
  173. intervalCumSumPktSize = sumPacketSize;
  174. intervalCumNewIPCount = ip_statistics.size();
  175. intervalCumNewTTLCount = ttl_values.size();
  176. intervalCumNewWinSizeCount = win_values.size();
  177. intervalCumNewToSCount = tos_values.size();
  178. intervalCumNewMSSCount = mss_values.size();
  179. if(ipEntopies.size()>1){
  180. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  181. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  182. }
  183. if(ipCumEntopies.size()>1){
  184. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  185. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  186. }
  187. }
  188. /**
  189. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  190. * Increments the counter packets_A_B or packets_B_A.
  191. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  192. * @param ipAddressSender The sender IP address.
  193. * @param sport The source port.
  194. * @param ipAddressReceiver The receiver IP address.
  195. * @param dport The destination port.
  196. * @param timestamp The timestamp of the packet.
  197. */
  198. void statistics::addConvStat(std::string ipAddressSender,int sport,std::string ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  199. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  200. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  201. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  202. if (conv_statistics.count(f1)>0){
  203. conv_statistics[f1].pkts_count++;
  204. if(conv_statistics[f1].pkts_count<=3)
  205. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  206. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  207. }
  208. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  209. else{
  210. conv_statistics[f2].pkts_count++;
  211. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  212. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  213. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  214. }
  215. }
  216. /**
  217. * Increments the packet counter for the given IP address and MSS value.
  218. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  219. * @param mssValue The MSS value of the packet.
  220. */
  221. void statistics::incrementMSScount(std::string ipAddress, int mssValue) {
  222. mss_values[mssValue]++;
  223. mss_distribution[{ipAddress, mssValue}]++;
  224. }
  225. /**
  226. * Increments the packet counter for the given IP address and window size.
  227. * @param ipAddress The IP address whose window size packet counter should be incremented.
  228. * @param winSize The window size of the packet.
  229. */
  230. void statistics::incrementWinCount(std::string ipAddress, int winSize) {
  231. win_values[winSize]++;
  232. win_distribution[{ipAddress, winSize}]++;
  233. }
  234. /**
  235. * Increments the packet counter for the given IP address and TTL value.
  236. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  237. * @param ttlValue The TTL value of the packet.
  238. */
  239. void statistics::incrementTTLcount(std::string ipAddress, int ttlValue) {
  240. ttl_values[ttlValue]++;
  241. ttl_distribution[{ipAddress, ttlValue}]++;
  242. }
  243. /**
  244. * Increments the packet counter for the given IP address and ToS value.
  245. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  246. * @param tosValue The ToS value of the packet.
  247. */
  248. void statistics::incrementToScount(std::string ipAddress, int tosValue) {
  249. tos_values[tosValue]++;
  250. tos_distribution[{ipAddress, tosValue}]++;
  251. }
  252. /**
  253. * Increments the protocol counter for the given IP address and protocol.
  254. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  255. * @param protocol The protocol of the packet.
  256. */
  257. void statistics::incrementProtocolCount(std::string ipAddress, std::string protocol) {
  258. protocol_distribution[{ipAddress, protocol}]++;
  259. }
  260. /**
  261. * Returns the number of packets seen for the given IP address and protocol.
  262. * @param ipAddress The IP address whose packet count is wanted.
  263. * @param protocol The protocol whose packet count is wanted.
  264. * @return an integer: the number of packets
  265. */
  266. int statistics::getProtocolCount(std::string ipAddress, std::string protocol) {
  267. return protocol_distribution[{ipAddress, protocol}];
  268. }
  269. /**
  270. * Increments the packet counter for
  271. * - the given sender IP address with outgoing port and
  272. * - the given receiver IP address with incoming port.
  273. * @param ipAddressSender The IP address of the packet sender.
  274. * @param outgoingPort The port used by the sender.
  275. * @param ipAddressReceiver The IP address of the packet receiver.
  276. * @param incomingPort The port used by the receiver.
  277. */
  278. void statistics::incrementPortCount(std::string ipAddressSender, int outgoingPort, std::string ipAddressReceiver,
  279. int incomingPort) {
  280. ip_ports[{ipAddressSender, "out", outgoingPort}]++;
  281. ip_ports[{ipAddressReceiver, "in", incomingPort}]++;
  282. }
  283. /**
  284. * Creates a new statistics object.
  285. */
  286. statistics::statistics(void) {
  287. }
  288. /**
  289. * Stores the assignment IP address -> MAC address.
  290. * @param ipAddress The IP address belonging to the given MAC address.
  291. * @param macAddress The MAC address belonging to the given IP address.
  292. */
  293. void statistics::assignMacAddress(std::string ipAddress, std::string macAddress) {
  294. ip_mac_mapping[ipAddress] = macAddress;
  295. }
  296. /**
  297. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  298. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  299. * @param ipAddressSender The IP address of the packet sender.
  300. * @param ipAddressReceiver The IP address of the packet receiver.
  301. * @param bytesSent The packet's size.
  302. */
  303. void statistics::addIpStat_packetSent(std::string filePath, std::string ipAddressSender, std::string ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  304. // Adding IP as a sender for first time
  305. if(ip_statistics[ipAddressSender].pkts_sent==0){
  306. // Add the IP class
  307. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  308. }
  309. // Adding IP as a receiver for first time
  310. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  311. // Add the IP class
  312. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  313. }
  314. // Update stats for packet sender
  315. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  316. ip_statistics[ipAddressSender].pkts_sent++;
  317. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  318. // Update stats for packet receiver
  319. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  320. ip_statistics[ipAddressReceiver].pkts_received++;
  321. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  322. }
  323. /**
  324. * Setter for the timestamp_firstPacket field.
  325. * @param ts The timestamp of the first packet in the PCAP file.
  326. */
  327. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  328. timestamp_firstPacket = ts;
  329. }
  330. /**
  331. * Setter for the timestamp_lastPacket field.
  332. * @param ts The timestamp of the last packet in the PCAP file.
  333. */
  334. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  335. timestamp_lastPacket = ts;
  336. }
  337. /**
  338. * Getter for the timestamp_firstPacket field.
  339. */
  340. Tins::Timestamp statistics::getTimestampFirstPacket() {
  341. return timestamp_firstPacket;
  342. }
  343. /**
  344. * Getter for the timestamp_lastPacket field.
  345. */
  346. Tins::Timestamp statistics::getTimestampLastPacket() {
  347. return timestamp_lastPacket;
  348. }
  349. /**
  350. * Getter for the packetCount field.
  351. */
  352. int statistics::getPacketCount() {
  353. return packetCount;
  354. }
  355. /**
  356. * Getter for the sumPacketSize field.
  357. */
  358. int statistics::getSumPacketSize() {
  359. return sumPacketSize;
  360. }
  361. /**
  362. * Returns the average packet size.
  363. * @return a float indicating the average packet size in kbytes.
  364. */
  365. float statistics::getAvgPacketSize() const {
  366. // AvgPktSize = (Sum of all packet sizes / #Packets)
  367. return (sumPacketSize / packetCount) / 1024;
  368. }
  369. /**
  370. * Adds the size of a packet (to be used to calculate the avg. packet size).
  371. * @param packetSize The size of the current packet in bytes.
  372. */
  373. void statistics::addPacketSize(uint32_t packetSize) {
  374. sumPacketSize += ((float) packetSize);
  375. }
  376. /**
  377. * Setter for the doExtraTests field.
  378. */
  379. void statistics::setDoExtraTests(bool var) {
  380. doExtraTests = var;
  381. }
  382. /**
  383. * Getter for the doExtraTests field.
  384. */
  385. bool statistics::getDoExtraTests() {
  386. return doExtraTests;
  387. }
  388. /**
  389. * Calculates the capture duration.
  390. * @return a formatted string HH:MM:SS.mmmmmm with
  391. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  392. */
  393. std::string statistics::getCaptureDurationTimestamp() const {
  394. // Calculate duration
  395. time_t t = (timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds());
  396. time_t ms = (timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds());
  397. long int hour = t / 3600;
  398. long int remainder = (t - hour * 3600);
  399. long int minute = remainder / 60;
  400. long int second = (remainder - minute * 60) % 60;
  401. long int microseconds = ms;
  402. // Build desired output format: YYYY-mm-dd hh:mm:ss
  403. char out[64];
  404. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  405. return std::string(out);
  406. }
  407. /**
  408. * Calculates the capture duration.
  409. * @return a formatted string SS.mmmmmm with
  410. * S: seconds (UNIX time), mmmmmm: microseconds
  411. */
  412. float statistics::getCaptureDurationSeconds() const {
  413. timeval d;
  414. d.tv_sec = timestamp_lastPacket.seconds() - timestamp_firstPacket.seconds();
  415. d.tv_usec = timestamp_lastPacket.microseconds() - timestamp_firstPacket.microseconds();
  416. char tmbuf[64], buf[64];
  417. auto nowtm = localtime(&(d.tv_sec));
  418. strftime(tmbuf, sizeof(tmbuf), "%S", nowtm);
  419. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) d.tv_usec);
  420. return std::stof(std::string(buf));
  421. }
  422. /**
  423. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  424. * @param seconds
  425. * @param microseconds
  426. * @return a formatted string Y-m-d H:M:S.m with
  427. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  428. */
  429. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  430. timeval tv;
  431. tv.tv_sec = seconds;
  432. tv.tv_usec = microseconds;
  433. char tmbuf[64], buf[64];
  434. auto nowtm = localtime(&(tv.tv_sec));
  435. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  436. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, (uint) tv.tv_usec);
  437. return std::string(buf);
  438. }
  439. /**
  440. * Calculates the statistics for a given IP address.
  441. * @param ipAddress The IP address whose statistics should be calculated.
  442. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  443. */
  444. ip_stats statistics::getStatsForIP(std::string ipAddress) {
  445. float duration = getCaptureDurationSeconds();
  446. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  447. ip_stats s;
  448. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  449. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  450. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  451. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  452. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  453. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  454. return s;
  455. }
  456. /**
  457. * Increments the packet counter.
  458. */
  459. void statistics::incrementPacketCount() {
  460. packetCount++;
  461. }
  462. /**
  463. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  464. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  465. */
  466. void statistics::printStats(std::string ipAddress) {
  467. std::stringstream ss;
  468. ss << std::endl;
  469. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  470. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  471. ss << "#Packets: " << packetCount << std::endl;
  472. ss << std::endl;
  473. // Print IP address specific statistics only if IP address was given
  474. if (ipAddress != "") {
  475. entry_ipStat e = ip_statistics[ipAddress];
  476. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  477. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  478. ss << "KBytes received: " << e.kbytes_received << std::endl;
  479. ss << "Packets sent: " << e.pkts_sent << std::endl;
  480. ss << "Packets received: " << e.pkts_received << "\n\n";
  481. ip_stats is = getStatsForIP(ipAddress);
  482. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  483. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  484. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  485. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  486. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  487. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  488. }
  489. std::cout << ss.str();
  490. }
  491. /**
  492. * Derives general PCAP file statistics from the collected statistical data and
  493. * writes all data into a SQLite database, located at database_path.
  494. * @param database_path The path of the SQLite database file ending with .sqlite3.
  495. */
  496. void statistics::writeToDatabase(std::string database_path) {
  497. // Generate general file statistics
  498. float duration = getCaptureDurationSeconds();
  499. long sumPacketsSent = 0, senderCountIP = 0;
  500. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  501. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  502. sumPacketsSent += i->second.pkts_sent;
  503. // Consumed bandwith (bytes) for sending packets
  504. sumBandwidthIn += (i->second.kbytes_received / duration);
  505. sumBandwidthOut += (i->second.kbytes_sent / duration);
  506. senderCountIP++;
  507. }
  508. float avgPacketRate = (packetCount / duration);
  509. long avgPacketSize = getAvgPacketSize();
  510. if(senderCountIP>0) {
  511. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  512. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  513. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  514. // Create database and write information
  515. statistics_db db(database_path);
  516. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  517. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  518. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  519. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  520. avgBandwidthOutInKBits);
  521. db.writeStatisticsIP(ip_statistics);
  522. db.writeStatisticsTTL(ttl_distribution);
  523. db.writeStatisticsIpMac(ip_mac_mapping);
  524. db.writeStatisticsPorts(ip_ports);
  525. db.writeStatisticsProtocols(protocol_distribution);
  526. db.writeStatisticsMSS(mss_distribution);
  527. db.writeStatisticsToS(tos_distribution);
  528. db.writeStatisticsWin(win_distribution);
  529. db.writeStatisticsConv(conv_statistics);
  530. db.writeStatisticsInterval(interval_statistics);
  531. }
  532. else {
  533. // Tinslib failed to recognize the types of the packets in the input PCAP
  534. std::cout<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  535. return;
  536. }
  537. }