from lea import Lea from Attack.MembersMgmtCommAttack import MessageType from Attack.MembersMgmtCommAttack import Message # needed because of machine inprecision. E.g A time difference of 0.1s is stored as >0.1s EPS_TOLERANCE = 1e-13 # works for a difference of 0.1, no less class CommunicationProcessor(): """ Class to process parsed input CSV/XML data and retrieve a mapping or other information. """ def __init__(self, packets:list, mtypes:dict): self.packets = packets self.mtypes = mtypes def set_mapping(self, packets: list, mapped_ids: dict): """ Set the selected mapping for this communication processor. :param packets: all packets contained in the mapped time frame :param mapped_ids: the chosen IDs """ self.packets = packets self.init_ids = set(mapped_ids.keys()) def find_interval_with_most_comm(self, number_ids: int, max_int_time: float): """ Finds a time interval of the given seconds where the given number of IDs communicate among themselves the most. :param packets: The packets containing the communication :param number_ids: The number of IDs that are to be considered :param max_int_time: A short description of the attack. :return: A triple consisting of the IDs, as well as start and end idx with respect to the given packets. """ packets = self.packets mtypes = self.mtypes def get_nez_comm_counts(comm_counts: dict): """ Filters out all msg_counts that have 0 as value """ nez_comm_counts = dict() for id_ in comm_counts.keys(): count = comm_counts[id_] if count > 0: nez_comm_counts[id_] = count return nez_comm_counts def greater_than(a: float, b: float): """ A greater than operator desgined to handle slight machine inprecision up to EPS_TOLERANCE. :return: True if a > b, otherwise False """ return b - a < -EPS_TOLERANCE def change_comm_counts(comm_counts: dict, idx: int, add=True): """ Changes the communication count, stored in comm_counts, of the initiating ID with respect to the packet specified by the given index. If add is True, 1 is added to the value, otherwise 1 is subtracted. """ change = 1 if add else -1 mtype = mtypes[int(packets[idx]["Type"])] id_src, id_dst = packets[idx]["Src"], packets[idx]["Dst"] if mtype in {MessageType.SALITY_HELLO, MessageType.SALITY_NL_REQUEST}: if id_src in comm_counts: comm_counts[id_src] += change elif change > 0: comm_counts[id_src] = 1 elif mtype in {MessageType.SALITY_HELLO_REPLY, MessageType.SALITY_NL_REPLY}: if id_dst in comm_counts: comm_counts[id_dst] += change elif change > 0: comm_counts[id_dst] = 1 def get_comm_count_first_ids(comm_counts: list): """ Finds the IDs that communicate among themselves the most with respect to the given message counts. :param msg_counts: a sorted list of message counts where each entry is a tuple of key and value :return: The picked IDs and their total message count as a tuple """ # if order of most messages is important, use an additional list picked_ids = {} total_comm_count = 0 # iterate over every message count for i, comm in enumerate(comm_counts): count_picked_ids = len(picked_ids) # if enough IDs have been found, stop if count_picked_ids >= number_ids: break picked_ids[comm[0]] = comm[1] total_comm_count += comm[1] return picked_ids, total_comm_count # first find all possible intervals that contain enough IDs that initiate communication idx_low, idx_high = 0, 0 comm_counts = dict() possible_intervals = [] # Iterate over all packets from start to finish and process the info of each packet # If time of packet within time interval, update the message count for this communication # If time of packet exceeds time interval, substract from the message count for this communication while True: if idx_high < len(packets): cur_int_time = float(packets[idx_high]["Time"]) - float(packets[idx_low]["Time"]) # if current interval time exceeds time interval, save the message counts if appropriate, or stop if no more packets if greater_than(cur_int_time, max_int_time) or idx_high >= len(packets): # get all message counts for communications that took place in the current intervall nez_comm_counts = get_nez_comm_counts(comm_counts) # if we have enough IDs as specified by the caller, mark as possible interval if len(nez_comm_counts) >= number_ids: # possible_intervals.append((nez_msg_counts, packets[idx_low]["Time"], packets[idx_high-1]["Time"])) possible_intervals.append((nez_comm_counts, idx_low, idx_high - 1)) if idx_high >= len(packets): break # let idx_low "catch up" so that the current interval time fits into the interval time specified by the caller while greater_than(cur_int_time, max_int_time): change_comm_counts(comm_counts, idx_low, add=False) idx_low += 1 cur_int_time = float(packets[idx_high]["Time"]) - float(packets[idx_low]["Time"]) # consume the new packet at idx_high and process its information change_comm_counts(comm_counts, idx_high) idx_high += 1 # now find the interval in which as many IDs as specified communicate the most in the given time interval summed_intervals = [] sum_intervals_idxs = [] cur_highest_sum = 0 # for every interval compute the sum of id_counts of the first most communicative IDs and eventually find # the interval(s) with most communication and its IDs # on the side also store the communication count of the individual IDs for j, interval in enumerate(possible_intervals): comm_counts = interval[0].items() sorted_comm_counts = sorted(comm_counts, key=lambda x: x[1], reverse=True) picked_ids, comm_sum = get_comm_count_first_ids(sorted_comm_counts) if comm_sum == cur_highest_sum: summed_intervals.append({"IDs": picked_ids, "CommSum": comm_sum, "Start": interval[1], "End": interval[2]}) elif comm_sum > cur_highest_sum: summed_intervals = [] summed_intervals.append({"IDs": picked_ids, "CommSum": comm_sum, "Start": interval[1], "End": interval[2]}) cur_highest_sum = comm_sum return summed_intervals def det_id_roles_and_msgs(self): """ Determine the role of every mapped ID. The role can be initiator, responder or both. On the side also connect corresponding messages together to quickly find out which reply belongs to which request and vice versa. :return: a 4-tuple as (initiator IDs, responder IDs, both IDs, messages) """ mtypes = self.mtypes # setup initial variables and their values respnd_ids = set() # msgs --> the filtered messages, msg_id --> an increasing ID to give every message an artificial primary key msgs, msg_id = [], 0 # keep track of previous request to find connections prev_reqs = {} init_ids = self.init_ids # process every packet individually for packet in self.packets: id_src, id_dst, msg_type, time = packet["Src"], packet["Dst"], int(packet["Type"]), float(packet["Time"]) # if if either one of the IDs is not mapped, continue if (id_src not in init_ids) and (id_dst not in init_ids): continue # convert message type number to enum type msg_type = mtypes[msg_type] # process a request if msg_type in {MessageType.SALITY_HELLO, MessageType.SALITY_NL_REQUEST}: if id_src not in init_ids: continue # process ID's role respnd_ids.add(id_dst) # convert the abstract message into a message object to handle it better msg_str = "{0}-{1}".format(id_src, id_dst) msg = Message(msg_id, id_src, id_dst, msg_type, time) msgs.append(msg) prev_reqs[msg_str] = msg_id # process a reply elif msg_type in {MessageType.SALITY_HELLO_REPLY, MessageType.SALITY_NL_REPLY}: if id_dst not in init_ids: continue # process ID's role respnd_ids.add(id_src) # convert the abstract message into a message object to handle it better msg_str = "{0}-{1}".format(id_dst, id_src) # find the request message ID for this response and set its reference index refer_idx = prev_reqs[msg_str] msgs[refer_idx].refer_msg_id = msg_id # print(msgs[refer_idx]) msg = Message(msg_id, id_src, id_dst, msg_type, time, refer_idx) msgs.append(msg) # remove the request to this response from storage del(prev_reqs[msg_str]) # for message ID only count actual messages if not msg_type == MessageType.TIMEOUT: msg_id += 1 # store the retrieved information in this object for later use self.respnd_ids = sorted(respnd_ids) self.messages = msgs # return the retrieved information return self.init_ids, self.respnd_ids, msgs def det_ext_and_local_ids(self, prob_rspnd_local: int): """ Map the given IDs to a locality (i.e. local or external} considering the given probabilities. :param comm_type: the type of communication (i.e. local, external or mixed) :param prob_rspnd_local: the probabilty that a responder is local """ external_ids = set() local_ids = self.init_ids.copy() # set up probabilistic chooser rspnd_locality = Lea.fromValFreqsDict({"local": prob_rspnd_local*100, "external": (1-prob_rspnd_local)*100}) # determine responder localities for id_ in self.respnd_ids: if id_ in local_ids or id_ in external_ids: continue pos = rspnd_locality.random() if pos == "local": local_ids.add(id_) elif pos == "external": external_ids.add(id_) self.local_ids, self.external_ids = local_ids, external_ids return self.local_ids, self.external_ids # def find_interval_with_most_comm(self, number_ids: int, max_int_time: float): # """ # Finds a time interval of the given seconds where the given number of IDs communicate among themselves the most. # :param packets: The packets containing the communication # :param number_ids: The number of IDs that are to be considered # :param max_int_time: A short description of the attack. # :return: A triple consisting of the IDs, as well as start and end idx with respect to the given packets. # """ # packets = self.packets # def get_nez_msg_counts(msg_counts: dict): # """ # Filters out all msg_counts that have 0 as value # """ # nez_msg_counts = dict() # for msg in msg_counts.keys(): # count = msg_counts[msg] # if count > 0: # nez_msg_counts[msg] = count # return nez_msg_counts # def greater_than(a: float, b: float): # """ # A greater than operator desgined to handle slight machine inprecision up to EPS_TOLERANCE. # :return: True if a > b, otherwise False # """ # return b - a < -EPS_TOLERANCE # def change_msg_counts(msg_counts: dict, idx: int, add=True): # """ # Changes the value of the message count of the message occuring in the packet specified by the given index. # Adds 1 if add is True and subtracts 1 otherwise. # """ # change = 1 if add else -1 # id_src, id_dst = packets[idx]["Src"], packets[idx]["Dst"] # src_to_dst = "{0}-{1}".format(id_src, id_dst) # dst_to_src = "{0}-{1}".format(id_dst, id_src) # if src_to_dst in msg_counts.keys(): # msg_counts[src_to_dst] += change # elif dst_to_src in msg_counts.keys(): # msg_counts[dst_to_src] += change # elif add: # msg_counts[src_to_dst] = 1 # def count_ids_in_msg_counts(msg_counts: dict): # """ # Counts all ids that are involved in messages with a non zero message count # """ # ids = set() # for msg in msg_counts.keys(): # src, dst = msg.split("-") # ids.add(dst) # ids.add(src) # return len(ids) # def get_msg_count_first_ids(msg_counts: list): # """ # Finds the IDs that communicate among themselves the most with respect to the given message counts. # :param msg_counts: a sorted list of message counts where each entry is a tuple of key and value # :return: The picked IDs and their total message count as a tuple # """ # # if order of most messages is important, use an additional list # picked_ids = set() # total_msg_count = 0 # # iterate over every message count # for i, msg in enumerate(msg_counts): # count_picked_ids = len(picked_ids) # id_one, id_two = msg[0].split("-") # # if enough IDs have been found, stop # if count_picked_ids >= number_ids: # break # # if two IDs can be added without exceeding the desired number of IDs, add them # if count_picked_ids - 2 <= number_ids: # picked_ids.add(id_one) # picked_ids.add(id_two) # total_msg_count += msg[1] # # if there is only room for one more id to be added, # # find one that is already contained in the picked IDs # else: # for j, msg in enumerate(msg_counts[i:]): # id_one, id_two = msg[0].split("-") # if id_one in picked_ids: # picked_ids.add(id_two) # total_msg_count += msg[1] # break # elif id_two in picked_ids: # picked_ids.add(id_one) # total_msg_count += msg[1] # break # break # return picked_ids, total_msg_count # def get_indv_id_counts_and_comms(picked_ids: dict, msg_counts: dict): # """ # Retrieves the total mentions of one ID in the communication pattern # and all communication entries that include only picked IDs. # """ # indv_id_counts = {} # id_comms = set() # for msg in msg_counts: # ids = msg.split("-") # if ids[0] in picked_ids and ids[1] in picked_ids: # msg_other_dir = "{}-{}".format(ids[1], ids[0]) # if (not msg in id_comms) and (not msg_other_dir in id_comms): # id_comms.add(msg) # for id_ in ids: # if id_ in indv_id_counts: # indv_id_counts[id_] += msg_counts[msg] # else: # indv_id_counts[id_] = msg_counts[msg] # return indv_id_counts, id_comms # # first find all possible intervals that contain enough IDs that communicate among themselves # idx_low, idx_high = 0, 0 # msg_counts = dict() # possible_intervals = [] # # Iterate over all packets from start to finish and process the info of each packet # # If time of packet within time interval, update the message count for this communication # # If time of packet exceeds time interval, substract from the message count for this communication # while True: # if idx_high < len(packets): # cur_int_time = float(packets[idx_high]["Time"]) - float(packets[idx_low]["Time"]) # # if current interval time exceeds time interval, save the message counts if appropriate, or stop if no more packets # if greater_than(cur_int_time, max_int_time) or idx_high >= len(packets): # # get all message counts for communications that took place in the current intervall # nez_msg_counts = get_nez_msg_counts(msg_counts) # # if we have enough IDs as specified by the caller, mark as possible interval # if count_ids_in_msg_counts(nez_msg_counts) >= number_ids: # # possible_intervals.append((nez_msg_counts, packets[idx_low]["Time"], packets[idx_high-1]["Time"])) # possible_intervals.append((nez_msg_counts, idx_low, idx_high - 1)) # if idx_high >= len(packets): # break # # let idx_low "catch up" so that the current interval time fits into the interval time specified by the caller # while greater_than(cur_int_time, max_int_time): # change_msg_counts(msg_counts, idx_low, add=False) # idx_low += 1 # cur_int_time = float(packets[idx_high]["Time"]) - float(packets[idx_low]["Time"]) # # consume the new packet at idx_high and process its information # change_msg_counts(msg_counts, idx_high) # idx_high += 1 # # now find the interval in which as many IDs as specified communicate the most in the given time interval # summed_intervals = [] # sum_intervals_idxs = [] # cur_highest_sum = 0 # # for every interval compute the sum of msg_counts of the first most communicative IDs and eventually find # # the interval(s) with most communication and its IDs # # on the side also store the communication count of the individual IDs # for j, interval in enumerate(possible_intervals): # msg_counts = interval[0].items() # sorted_msg_counts = sorted(msg_counts, key=lambda x: x[1], reverse=True) # picked_ids, msg_sum = get_msg_count_first_ids(sorted_msg_counts) # if msg_sum == cur_highest_sum: # summed_intervals.append({"IDs": picked_ids, "MsgSum": msg_sum, "Start": interval[1], "End": interval[2]}) # sum_intervals_idxs.append(j) # elif msg_sum > cur_highest_sum: # summed_intervals = [] # sum_intervals_idxs = [j] # summed_intervals.append({"IDs": picked_ids, "MsgSum": msg_sum, "Start": interval[1], "End": interval[2]}) # cur_highest_sum = msg_sum # for j, interval in enumerate(summed_intervals): # idx = sum_intervals_idxs[j] # msg_counts_picked = possible_intervals[idx][0] # indv_id_counts, id_comms = get_indv_id_counts_and_comms(interval["IDs"], msg_counts_picked) # interval["IDs"] = indv_id_counts # interval["Comms"] = id_comms # return summed_intervals # def det_id_roles_and_msgs(self): # """ # Determine the role of every mapped ID. The role can be initiator, responder or both. # On the side also connect corresponding messages together to quickly find out # which reply belongs to which request and vice versa. # :return: a 4-tuple as (initiator IDs, responder IDs, both IDs, messages) # """ # mtypes = self.mtypes # # setup initial variables and their values # init_ids, respnd_ids, both_ids = set(), set(), set() # # msgs --> the filtered messages, msg_id --> an increasing ID to give every message an artificial primary key # msgs, msg_id = [], 0 # # kepp track of previous request to find connections # prev_reqs = {} # all_init_ids = self.init_ids # packets = self.packets # def process_initiator(id_: str): # """ # Process the given ID as initiator and update the above sets accordingly. # """ # if id_ in both_ids: # pass # elif not id_ in respnd_ids: # init_ids.add(id_) # elif id_ in respnd_ids: # respnd_ids.remove(id_) # both_ids.add(id_) # def process_responder(id_: str): # """ # Process the given ID as responder and update the above sets accordingly. # """ # if id_ in both_ids: # pass # elif not id_ in init_ids: # respnd_ids.add(id_) # elif id_ in init_ids: # init_ids.remove(id_) # both_ids.add(id_) # # process every packet individually # for packet in packets: # id_src, id_dst, msg_type, time = packet["Src"], packet["Dst"], int(packet["Type"]), float(packet["Time"]) # # if if either one of the IDs is not mapped, continue # if (not id_src in all_ids) or (not id_dst in all_ids): # continue # # convert message type number to enum type # msg_type = mtypes[msg_type] # # process a request # if msg_type in {MessageType.SALITY_HELLO, MessageType.SALITY_NL_REQUEST}: # # process each ID's role # process_initiator(id_src) # process_responder(id_dst) # # convert the abstract message into a message object to handle it better # msg_str = "{0}-{1}".format(id_src, id_dst) # msg = Message(msg_id, id_src, id_dst, msg_type, time) # msgs.append(msg) # prev_reqs[msg_str] = msg_id # # process a reply # elif msg_type in {MessageType.SALITY_HELLO_REPLY, MessageType.SALITY_NL_REPLY}: # # process each ID's role # process_initiator(id_dst) # process_responder(id_src) # # convert the abstract message into a message object to handle it better # msg_str = "{0}-{1}".format(id_dst, id_src) # # find the request message ID for this response and set its reference index # refer_idx = prev_reqs[msg_str] # msgs[refer_idx].refer_msg_id = msg_id # # print(msgs[refer_idx]) # msg = Message(msg_id, id_src, id_dst, msg_type, time, refer_idx) # msgs.append(msg) # # remove the request to this response from storage # del(prev_reqs[msg_str]) # # for message ID only count actual messages # if not msg_type == MessageType.TIMEOUT: # msg_id += 1 # # store the retrieved information in this object for later use # self.init_ids, self.respnd_ids, self.both_ids = sorted(init_ids), sorted(respnd_ids), sorted(both_ids) # self.messages = msgs # # return the retrieved information # return init_ids, respnd_ids, both_ids, msgs # def det_ext_and_local_ids(self, comm_type: str, prob_init_local: int, prob_rspnd_local: int): # """ # Map the given IDs to a locality (i.e. local or external} considering the given probabilities. # :param comm_type: the type of communication (i.e. local, external or mixed) # :param prob_init_local: the probabilty that an initiator ID is local # :param prob_rspnd_local: the probabilty that a responder is local # """ # init_ids, respnd_ids, both_ids = self.init_ids, self.respnd_ids, self.both_ids # id_comms = sorted(self.id_comms) # external_ids = set() # local_ids = set() # ids = self.init_ids # def map_init_is_local(id_:str): # """ # Map the given ID as local and handle its communication partners' locality # """ # # loop over all communication entries # for id_comm in id_comms: # ids = id_comm.split("-") # other = ids[0] if id_ == ids[1] else ids[1] # # if id_comm does not contain the ID to be mapped, continue # if not (id_ == ids[0] or id_ == ids[1]): # continue # # if other is already mapped, continue # if other in local_ids or other in external_ids: # continue # # if comm_type is mixed, other ID can be local or external # if comm_type == "mixed": # other_pos = mixed_respnd_is_local.random() # if other_pos == "local": # local_ids.add(other) # elif other_pos == "external": # external_ids.add(other) # # if comm_type is external, other ID must be external to fulfill type # # exlude initiators not to throw away too much communication # elif comm_type == "external": # if not other in initiators: # external_ids.add(other) # def map_init_is_external(id_: int): # """ # Map the given ID as external and handle its communication partners' locality # """ # for id_comm in id_comms: # ids = id_comm.split("-") # other = ids[0] if id_ == ids[1] else ids[1] # # if id_comm does not contain the ID to be mapped, continue # if not (id_ == ids[0] or id_ == ids[1]): # continue # # if other is already mapped, continue # if other in local_ids or other in external_ids: # continue # if not other in initiators: # local_ids.add(other) # # if comm_type is local, map all IDs to local # if comm_type == "local": # local_ids = set(mapped_ids.keys()) # else: # # set up probabilistic chooser # init_local_or_external = Lea.fromValFreqsDict({"local": prob_init_local*100, "external": (1-prob_init_local)*100}) # mixed_respnd_is_local = Lea.fromValFreqsDict({"local": prob_rspnd_local*100, "external": (1-prob_rspnd_local)*100}) # # assign IDs in 'both' local everytime for mixed? # # sort initiators by some order, to gain determinism # initiators = sorted(list(init_ids) + list(both_ids)) # # sort by individual communication count to increase final communication count # # better to sort by highest count of 'shared' IDs in case of local comm_type? # initiators = sorted(initiators, key=lambda id_:self.indv_id_counts[id_], reverse=True) # for id_ in initiators: # pos = init_local_or_external.random() # if pos == "local": # # if id_ has already been mapped differently, its communication partners still have to be mapped # if id_ in external_ids: # map_init_is_external(id_) # # otherwise, map as chosen above # else: # local_ids.add(id_) # map_init_is_local(id_) # elif pos == "external": # # if id_ has already been mapped differently, its communication partners still have to be mapped # if id_ in local_ids: # map_init_is_local(id_) # # otherwise, map as chosen above # else: # external_ids.add(id_) # map_init_is_external(id_) # self.local_ids, self.external_ids = local_ids, external_ids # return