Sfoglia il codice sorgente

Add histograms for all botnet plots

Somehow, uncommenting the creation of the degree histograms
leads to a Segmentation Fault 11, when plotted with all other ID2T
statistics. Running these three lines alone or only with the other
histograms seems to work though.
dustin.born 6 anni fa
parent
commit
9c4ad4f704
1 ha cambiato i file con 114 aggiunte e 0 eliminazioni
  1. 114 0
      code/ID2TLib/Statistics.py

+ 114 - 0
code/ID2TLib/Statistics.py

@@ -1311,6 +1311,104 @@ class Statistics:
             # plot data and return outpath
             return plot_big_conv_ext_stat("totalConversationDuration", title, 'Duration', suffix)
 
+        def plot_comm_histogram(attr:str, title:str, label:str, suffix:str):
+            """
+            Plots a histogram about the specified attribute for communications.
+            :param attr: The statistics attribute for this histogram
+            :param title: The title of the histogram
+            :param label: The xlabel of the histogram
+            :param suffix: The file suffix
+            :return: The path to the created plot
+            """
+
+            plt.gcf().clear()
+            result_raw = self.stats_db._process_user_defined_query(
+                "SELECT %s FROM conv_statistics_extended" % attr)
+
+            # return without plotting if no data available
+            if not result_raw:
+                return None
+
+            result = []
+            for entry in result_raw:
+                result.append(entry[0])
+
+            # if title would be cut off, set minimum width
+            plt_size = plt.gcf().get_size_inches()
+            min_width = len(title) * 0.12
+            if plt_size[0] < min_width:
+                plt.gcf().set_size_inches(min_width, plt_size[1])  # set plot size
+
+            # set additional plot parameters
+            plt.title(title)
+            plt.ylabel("Number of connections")
+            plt.xlabel(label)
+            width = 0.5
+            plt.grid(True)
+
+            # create 11 bins
+            bins = []
+            max_val = max(result)
+            for i in range(0, 11):
+                bins.append(i * max_val/10)
+
+            # comment out and set weights to normalize
+            # weights = numpy.ones_like(result)/float(len(result))
+
+            # plot the above data, first use plain numbers as graphy to maintain sorting
+            plt.hist(result, bins=bins, color='red', edgecolor='red', align="mid", rwidth=0.5)
+            plt.xticks(bins)
+
+            # save created figure
+            out = self.pcap_filepath.replace('.pcap', suffix)
+            plt.savefig(out, dpi=500)
+            return out
+
+        def plot_histogram_degree(degree_type:str, title:str, label:str, suffix:str):          
+            """
+            Plots a histogram about the specified type for the degree of an IP.
+            :param degree_type: The type of degree, i.e. inDegree, outDegree or overallDegree
+            :param title: The title of the histogram
+            :param label: The xlabel of the histogram
+            :param suffix: The file suffix
+            :return: The path to the created plot
+            """  
+            
+            plt.gcf().clear()
+            result_raw = self.get_filtered_degree(degree_type)
+
+            # return without plotting if no data available
+            if not result_raw:
+                return None
+
+            result = []
+            for entry in result_raw:
+                result.append(entry[1])
+
+            # set additional plot parameters
+            plt.title(title)
+            plt.ylabel("Number of IPs")
+            plt.xlabel(label)
+            width = 0.5
+            plt.grid(True)
+
+            # create 11 bins
+            bins = []
+            max_val = max(result)
+            for i in range(0, 11):
+                bins.append(int(i * max_val/10))
+
+            # comment out and set weights to normalize
+            # weights = numpy.ones_like(result)/float(len(result))
+
+            # plot the above data, first use plain numbers as graphy to maintain sorting
+            plt.hist(result, bins=bins, color='red', edgecolor='red', align="mid", rwidth=0.5)
+            plt.xticks(bins)
+
+            # save created figure
+            out = self.pcap_filepath.replace('.pcap', suffix)
+            plt.savefig(out, dpi=500)
+            return out    
 
         ttl_out_path = plot_ttl('.' + format)
         mss_out_path = plot_mss('.' + format)
@@ -1335,6 +1433,22 @@ class Statistics:
         plot_avg_time_between_comm_interval_out = plot_avg_time_between_comm_interval('.' + format)
         plot_avg_comm_interval_time_out = plot_avg_comm_interval_time("." + format)
         plot_total_comm_duration_out = plot_total_comm_duration("." + format)
+        plot_hist_pkts_per_connection_out = plot_comm_histogram("pktsCount", "Histogram - Number of exchanged packets per connection",
+            "Number of packets", "_plot-Histogram PktCount per Connection" + "." + format)
+        plot_hist_avgpkts_per_commint_out = plot_comm_histogram("avgIntervalPktCount", "Histogram - Average number of exchanged packets per communication interval",
+            "Average number of packets", "_plot-Histogram Avg PktCount per Interval per Connection" + "." + format)
+        plot_hist_avgtime_betw_commints_out = plot_comm_histogram("avgTimeBetweenIntervals", "Histogram - Average time between communication intervals in seconds",
+            "Average time between intervals", "_plot-Histogram Avg Time Between Intervals per Connection" + "." + format)
+        plot_hist_avg_int_time_per_connection_out = plot_comm_histogram("avgIntervalTime", "Histogram - Average duration of a communication interval in seconds",
+            "Average interval time", "_plot-Histogram Avg Interval Time per Connection" + "." + format)
+        plot_hist_total_comm_duration_out = plot_comm_histogram("totalConversationDuration", "Histogram - Total communication duration in seconds",
+            "Duration", "_plot-Histogram Communication Duration per Connection" + "." + format)
+        # plot_hist_indegree_out = plot_histogram_degree("inDegree", "Histogram - Ingoing degree per IP Address", 
+        #     "Ingoing degree", "_plot-Histogram Ingoing Degree per IP" + format)
+        # plot_hist_outdegree_out = plot_histogram_degree("outDegree", "Histogram - Outgoing degree per IP Address", 
+        #     "Outgoing degree", "_plot-Histogram Outgoing Degree per IP" + format)
+        # plot_hist_overalldegree_out = plot_histogram_degree("overallDegree", "Histogram - Overall degree per IP Address", 
+        #     "Overall degree", "_plot-Histogram Overall Degree per IP" + format)
 
         ## Time consuming plot
         # port_out_path = plot_port('.' + format)