1234567891011121314151617181920212223242526272829303132333435 |
- import csv
- import os
- import numpy as np
- sum_distance_joints = np.zeros(18)
- counter = 0
- def vector_string_to_float(vector):
- """
- Convert vector string to float
- Parameters:
- vector: vector still in string
- Returns:
- vector: vector with type float
- """
- vector = vector.split(';')
- vector = list(map(float, vector))
- return vector
- path = os.path.join(os.getcwd(), 'Assets\\demo_and_body_positions.csv')
- with open(path, newline='') as csvfile:
- reader = csv.reader(csvfile)
- header = next(reader)
- for row in reader:
- for i in range(18):
- demo = vector_string_to_float(row[i])
- body = vector_string_to_float(row[i+18])
- distance = np.linalg.norm(np.subtract(demo, body))
- sum_distance_joints[i] += distance
- counter += 1
- for i in range(sum_distance_joints.size):
- print("3d accuracy ", header[i][5:], ": ", sum_distance_joints[i] / counter)
|