
SteamVR Unity Plugin Quickstart Guide

The SteamVR Unity plugin comes in three different versions depending on which version of
Unity is used to download it.

1) v4 - For use with Unity version 4.x (tested going back to 4.6.8f1)
2) v5 - For use with Unity version 5.x (for versions less than 5.4)
3) v54 - For use with Unity version 5.4 and newer (including 2017.x)

Note: Native OpenVR support was added to Unity starting with version 5.4, so you will
see a lot of additional code dealing with rendering in the v5 version of the plugin. This
has been stripped out in the v54 version. To make upgrading easier, the v5 version will
also work with Unity 5.4.x and will auto-update itself. However, switching back to an
older build of Unity requires reimporting the plugin to undo that process.

Unity will cache Asset Store downloads. To force redownloading, go to Asset Store, click on the
Inbox icon next to Home, find SteamVR Plugin in the list and click Download. Then click Import
to re-import into your Project. It is recommended you delete the SteamVR package manually
from your project before reimporting in order to ensure old files do not remain.

The Lab’s Interaction System is only included in v54 of the plugin. Refer to its own
documentation under Asset > SteamVR > InteractionSystem.

1 of 5

Copyright © Valve Corporation, All rights reserved.

SteamVR Unity Plugin Quickstart Guide

Native OpenVR support

In Unity 5.4 and newer, you can enable native OpenVR support under Edit > Project Settings >
Player > Other Settings. Checking Virtual Reality Support will add a list of Virtual Reality SDKs.
Use the + dropdown to add OpenVR, and drag it up and down in the list to control the
initialization priority.

See more details here: https://docs.unity3d.com/Manual/VROverview.html

When importing the SteamVR Unity plugin, this setup is performed for you automatically.

2 of 5

Copyright © Valve Corporation, All rights reserved.

https://docs.unity3d.com/Manual/VROverview.html

SteamVR Unity Plugin Quickstart Guide

Example scene

The plugin includes an example scene which exercises the core functionality of the plugin. This
includes the [Status] prefab which demonstrates how to use SteamVR with different legacy
versions of UI support in Unity. This prefab is slow and should not be used in production
scenes. It is provided for demonstration purposes only.

The Main Camera in this scene has also been modified from the [CameraRig] prefab included
with the plugin. It has an array of 16 Tacked Devices (with the Render Models for the left and
right controller included with the prefab disabled to avoid double rendering). This is useful for
displaying all the tracked devices connected to the system, but is likely not what you want in
production scenes. This scene is also setup to use Seated tracking (see the [SteamVR] object’s
Tracking Space setting) rather than Standing (i.e. Room Scale) tracking.

Because of the above issues it is recommended that you not use the example scene as a
starting point for any production scenes. Instead, start from an empty scene (delete the Main
Camera) and drag and drop the [CameraRig] prefab into your scene.

If you want to change any values controlled by [SteamVR], you can optionally drag and drop
that into your scene as well and change them there. Otherwise, this object will be created for
you automatically at runtime using the default values.

tl;dr - Do not use the example scene as a basis for production levels, and in particular do
not use the [Status] prefab.

3 of 5

Copyright © Valve Corporation, All rights reserved.

SteamVR Unity Plugin Quickstart Guide

[CameraRig] prefab

Play Area

The [CameraRig] prefab includes a Play Area script which draws a play area representing the
floor in the user’s space they can walk around in. This is the root object which can be moved
(and scaled) to change how the user’s room setup maps to the game world. There is a
drop-down to select a specific size (large, medium and small room scale spaces) as well as a
Calibrated setting to match the value set by the user’s room setup. This is intended for
development reference and hidden at runtime, but there is a checkbox to enable it at runtime as
well. It is recommended you use Calibrated in that case so it always matches each user’s room
setup.

Controllers

Controllers are assigned using the Controller Manager script. Each root controller object has
only a Tracked Object script. The Tracked Object script updates the transform to match the
associated device. SteamVR assigns an index to each tracked device starting with 0 (zero) for
the headset. Tracked devices are not just controllers, but also include the basestations (or
tracking cameras), tracking pucks, etc.

4 of 5

Copyright © Valve Corporation, All rights reserved.

SteamVR Unity Plugin Quickstart Guide

Render Models

Each controller has a single child object with a Render Model script. The Render Model script is
responsible for dynamically loading the geometry and textures for the assigned tracked device.
This is useful for supporting future hardware that does not exist at the time you ship your game.

The Model Override drop down allows you to select any existing device model in the Editor.
This will populate the Model object with child objects representing the parts of the selected
model. All children under a Render Model object will be disabled and only activated if actually
attached. Therefore, you should not add any child objects yourself under a Render Model.

Each Render Model piece has an ‘attach’ point. This can be used to attach objects similarly
across different devices. Again these will be activated only when present. Render Model
pieces should have similar names where appropriate to help make handling different devices
easier. For example both the Vive wand and Touch controller have a ‘tip’ component. This can
be used for attaching a laser pointer for example.

Camera (eye)

The Camera (eye) object is the camera used for rendering. It is shared across both eye by
default. Any full screen fx will normally be added to this object.

Camera (head)

In earlier versions of Unity (pre-5.4) the Camera (head) object was used to follow the headset
position and rotation, with the Camera (eye) as a child. With native OpenVR integration (5.4
and later) the Camera (eye) is now moved to follow the headset motion, so you’ll find the
Camera (head) object swap places with the Camera (eye) and gets disabled. The Camera
(head) object was also responsible for rendering the companion window (the VR preview that
shows up on the desktop) in older versions (view the Game View script), while newer versions
handle this automatically using the Camera (eye). This can be overridden by adding a separate
camera to your scene and setting its TargetEye to None (Main Display). Just keep in mind that
this will be more expensive as it will be re-rendering the scene rather than simply reusing the
texture from one of the eyes.

5 of 5

Copyright © Valve Corporation, All rights reserved.

