ObjectiveFunctionByCarlos.java 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. package algorithm.objectiveFunction;
  2. import classes.Flexibility;
  3. import classes.HolonElement.Priority;
  4. import model.DecoratedNetwork;
  5. import model.DecoratedState;
  6. public class ObjectiveFunctionByCarlos {
  7. //Parameters
  8. //weight for f_g(H)
  9. static double w_eb = .3, w_state = .3, w_pro = .2, w_perf = .1, w_holon=.1;
  10. //killswitch weights
  11. //static double w_eb = 0.5, w_state = 0.5, w_pro = 0.0f, w_perf = .0, w_holon=.0;
  12. //kappas for squashing function
  13. //
  14. static double k_eb = 1050000.f, k_state = 10000, k_pro = 2000, k_perf = 11000, k_holon= 150000;
  15. // oversupplied
  16. // static double k_eb = 750000.f, k_state = 20000, k_pro = 3000, k_perf = 15000, k_holon= 200000;
  17. // old values undersupplied
  18. // static double k_eb = 1000000.f, k_state = 15000, k_pro = 2100, k_perf = 12000, k_holon= 200000;
  19. //theta for f_pro
  20. static double theta = 3;
  21. //kappas for f_perf:
  22. static double kappa_f_unre = 120;
  23. static double kappa_f_cool = 60*60*24;
  24. static double kappa_f_dur = 60*60;
  25. //lambdas for f_perf:
  26. static double lambda_f_unre = 10;
  27. static double lambda_f_cool = 10;
  28. static double lambda_f_dur = 10;
  29. static double lambda_f_change = 1000;
  30. //pre-calculated parameters for partial function terms:
  31. /**
  32. * Pre calculated for the squash function
  33. * <br>
  34. * {@link ObjectiveFunctionByCarlos#squash}
  35. */
  36. static double squash_subtract = 1.0f / (1.f + (float) Math.exp(5.0));
  37. static double range_for_kappa_f_unre = range(kappa_f_unre);
  38. static double range_for_kappa_f_cool = range(kappa_f_cool);
  39. static double range_for_kappa_f_dur = range(kappa_f_dur);
  40. public static void main(String[] args) {
  41. System.out.println("Hello World");
  42. System.out.println("range_for_kappa_f_unre:" + range_for_kappa_f_unre);
  43. double input = 0;
  44. System.out.println(input + ": " + durationPenalty(input));
  45. input = 60;
  46. System.out.println(input + ": " + durationPenalty(input));
  47. input = 1000;
  48. System.out.println(input + ": " + durationPenalty(input));
  49. input = 3600;
  50. System.out.println(input + ": " + durationPenalty(input));
  51. }
  52. static {
  53. //init
  54. checkParameter();
  55. }
  56. /**
  57. * Check parameter Setting and print error when wrong values are put in.
  58. * Here should all invariants be placed to be checked on initialization.
  59. */
  60. private static void checkParameter() {
  61. if(!(Math.abs(w_eb + w_state + w_pro + w_perf + w_holon - 1) < 0.001)) {
  62. System.err.println("ParameterError in ObjectiveFunction: w1 + w2 + w3 + w4 + w5 should be 1");
  63. }
  64. }
  65. /**
  66. * ObjectifeFunction by Carlos.
  67. * Function computes f_g:
  68. * f_g = w1 * squash(f_eb, k1) + w2 * squash(f_state, k2) + w3 * squash(f_pro, k3) + w4 * squash(f_perf, k4) + w5 * squash(f_holon, k5)
  69. *
  70. *
  71. * squash is the squashing function {@link ObjectiveFunctionByCarlos#squash}
  72. *
  73. *
  74. * @param state
  75. * @return f_g value between 0 and 100
  76. */
  77. static public double getFitnessValueForState(DecoratedState state) {
  78. //Calculate f_eb the penalty for unbalenced energy in the network
  79. double f_eb = 0;
  80. //sum over all objects
  81. for(DecoratedNetwork net : state.getNetworkList()) {
  82. double netEnergyDifference = 0;
  83. netEnergyDifference += net.getConsumerList().stream().map(con -> con.getEnergySelfSupplied() - con.getEnergyFromConsumingElemnets()).reduce(0.f, Float::sum);
  84. netEnergyDifference += net.getConsumerSelfSuppliedList().stream().map(con -> con.getEnergySelfSupplied() - con.getEnergyFromConsumingElemnets()).reduce(0.f, Float::sum);
  85. netEnergyDifference += net.getSupplierList().stream().map(sup -> sup.getEnergyProducing() - sup.getEnergySelfConsuming()).reduce(0.f, Float::sum);
  86. //abs
  87. f_eb += Math.abs(netEnergyDifference);
  88. }
  89. //Calculate f_state the penalty function for the supply state
  90. double f_state = 0;
  91. for(DecoratedNetwork net : state.getNetworkList()) {
  92. f_state += net.getConsumerList().stream().map(con -> supplyPenalty(con.getSupplyBarPercentage())).reduce(0., Double::sum);
  93. }
  94. //calculate f_pro the penalty function for priority usage
  95. // for each active flexibility punish
  96. double f_pro = 0;
  97. f_pro = state.getFlexManager().getAllFlexesOrderedThisTimeStep().stream().map(flex -> Math.pow(theta, priorityToDouble(flex.getElement().getPriority()) ) - 1.0).reduce(0.0, Double::sum);
  98. //calculate f_perf the penalty function for the quality of a flexibility used
  99. // and the subfuction f_unre, f_cool, f_dur
  100. double f_perf = 0;
  101. for(Flexibility flex : state.getFlexManager().getAllFlexesOrderedThisTimeStep()) {
  102. double f_unre = unresponsivnessPenalty(flex.getSpeed());
  103. double f_cool = cooldownPenalty(flex.getCooldown());
  104. double f_dur = durationPenalty(flex.getDuration());
  105. f_perf += f_unre + f_cool + f_dur;
  106. }
  107. //calculate f_holon
  108. double f_holon = 0;
  109. for(DecoratedNetwork net : state.getNetworkList()) {
  110. double f_elements_diviation_production = net.getDeviationInProductionInNetworkForHolonObjects();
  111. double f_elements_diviation_consumption = net.getDeviationInProductionInNetworkForHolonObjects();
  112. double f_flexibility_diviation_consumption = net.getDiviationInFlexibilityConsumption();
  113. double f_flexibility_diviation_production = net.getDiviationInFlexibilityProduction();
  114. double con = net.getTotalConsumption();
  115. double prod = net.getTotalProduction();
  116. double flexcapProd = net.getFlexibilityProductionCapacity();
  117. double flexcapCon = net.getFlexibilityConsumptionCapacity();
  118. double f_change_positive = lambda_f_change - lambda_f_change * Math.min(1, (con > 0.0)? flexcapProd / con : 1.0 );
  119. double f_change_negativ = lambda_f_change - lambda_f_change * Math.min(1, (prod > 0.0)? flexcapCon / prod: 1.0);
  120. double f_element = f_elements_diviation_production +f_elements_diviation_consumption;
  121. double f_flexibility = f_flexibility_diviation_consumption +f_flexibility_diviation_production;
  122. double f_change = f_change_positive + f_change_negativ;
  123. f_holon += f_element + f_flexibility + f_change;
  124. // System.out.print( "f_element=" + doubleToString(f_element));
  125. // System.out.print( " f_flexibility=" + doubleToString(f_flexibility));
  126. // System.out.println( " f_change=" + doubleToString(f_change));
  127. // System.out.print( "f+elements=" + doubleToString(f_elements_diviation_production));
  128. // System.out.print( " f-elements=" + doubleToString(f_elements_diviation_consumption));
  129. // System.out.print( " f+flexibility" + doubleToString(f_flexibility_diviation_consumption));
  130. // System.out.print( " f-flexibility" + doubleToString(f_flexibility_diviation_production));
  131. // System.out.print( " f+change(" + doubleToString(flexcapProd) + "/" + doubleToString(con) + ")=" + doubleToString(f_change_positive));
  132. // System.out.print( " f-change(" + doubleToString(flexcapCon) + "/" + doubleToString(prod) + ")="+ doubleToString(f_change_negativ));
  133. // System.out.println( " sum=" + doubleToString(sum));
  134. }
  135. // System.out.print( "f_ebVALUE=" + f_eb);
  136. // System.out.print( " f_state=" + f_state);
  137. // System.out.print( " f_pro=" + f_pro);
  138. // System.out.print( " f_perf=" + f_perf);
  139. // System.out.println( " f_holon=" + f_holon);
  140. double q1 = squash(f_eb, k_eb);
  141. double q2 = squash(f_state, k_state);
  142. double q3 = squash(f_pro, k_pro);
  143. double q4 = squash(f_perf, k_perf);
  144. double q5 = squash(f_holon, k_holon);
  145. // System.out.print( "f_eb=" + q1);
  146. // System.out.print( " f_state=" + q2);
  147. // System.out.println( " f_pro=" + q3);
  148. // System.out.println( " f_perf=" + q4);
  149. // System.out.println( " f_holon=" + q5);
  150. //
  151. return w_eb * q1 + w_state * q2 + w_pro * q3 + w_perf * q4 + w_holon * q5;
  152. //return (float) (f_eb + f_state + f_pro + f_perf + f_holon);
  153. }
  154. /**
  155. * The squashing function in paper
  156. * @param x the input
  157. * @param kappa the corresponding kappa
  158. * @return
  159. */
  160. static public double squash(double x, double kappa) {
  161. return 100.f/(1.0f + Math.exp(-(10.f * (x - kappa/2.f))/ kappa)) - squash_subtract;
  162. }
  163. /**
  164. * f_sup in paper
  165. * @param supply from 0 to 1
  166. * @return
  167. */
  168. static public double supplyPenalty(double supply) {
  169. double supplyPercentage = 100 * supply;
  170. // double test = (supplyPercentage < 100) ? -0.5 * supplyPercentage + 50: supplyPercentage - 100;
  171. return (supplyPercentage < 100) ? -0.5 * supplyPercentage + 50: supplyPercentage - 100;
  172. }
  173. /**
  174. * prio function in the paper
  175. * @param priority
  176. * @return
  177. */
  178. private static double priorityToDouble(Priority priority) {
  179. switch(priority) {
  180. case Essential:
  181. return 3.;
  182. case High:
  183. return 2.;
  184. case Medium:
  185. return 1.;
  186. case Low:
  187. default:
  188. return 0.;
  189. }
  190. }
  191. /**
  192. * Attention Math.log calcultae ln not log
  193. * @param kappa
  194. * @return
  195. */
  196. private static double range(double kappa) {
  197. return - kappa / Math.log(Math.pow(2.0, 0.05) - 1.0 );
  198. }
  199. /**
  200. * f_unre
  201. * @param unresponsiv
  202. * @return
  203. */
  204. private static double unresponsivnessPenalty(double unresponsiv) {
  205. return (2.0 * lambda_f_unre) / (1 + Math.exp(- unresponsiv/ range_for_kappa_f_unre)) - lambda_f_unre;
  206. }
  207. /**
  208. * f_cool
  209. * @param cooldown
  210. * @return
  211. */
  212. private static double cooldownPenalty(double cooldown) {
  213. return (2.0 * lambda_f_cool) / (1 + Math.exp(- cooldown/ range_for_kappa_f_cool)) - lambda_f_cool;
  214. }
  215. private static double durationPenalty(double duration) {
  216. double lambda_dur_times2 = 2.0 * lambda_f_dur;
  217. return - lambda_dur_times2 / (1 + Math.exp(- duration/ range_for_kappa_f_dur)) + lambda_dur_times2;
  218. }
  219. }