TargetStateAssembler.java 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. package classes.holonControlUnit;
  2. import java.util.ArrayList;
  3. import java.util.HashMap;
  4. import java.util.List;
  5. import com.google.gson.Gson;
  6. import classes.holonControlUnit.OptimizationManager.OptimizationScheme;
  7. import classes.holonControlUnit.messages.MergeMsg;
  8. import classes.holonControlUnit.messages.Message;
  9. import classes.holonControlUnit.messages.OrderMsg;
  10. import classes.holonControlUnit.messages.StateMsg;
  11. public class TargetStateAssembler {
  12. private HolonControlUnit hcu;
  13. private float desiredPowerUsage = 100f;
  14. private OrderMsg order;
  15. // private HashMap<String, OrderMsg> ordersForSubholon;
  16. public TargetStateAssembler(HolonControlUnit hcu) {
  17. this.order = null;
  18. this.hcu = hcu;
  19. // this.ordersForSubholon = new HashMap<String, OrderMsg>();
  20. }
  21. public void assembleTargetState(int timeStep) {
  22. if(this.order == null || this.order.getTimeStep() >= timeStep-1) {
  23. this.desiredPowerUsage = 0f;
  24. } else {
  25. this.desiredPowerUsage = this.order.getDesiredPowerUsage();
  26. }
  27. // this.ordersForSubholon.clear();
  28. // System.out.println(this.hcu.getHolon().getUniqueID()+" opt scheme: "+this.hcu.getOptimizer().getOptimizationScheme());
  29. //balance the sub holons
  30. OptimizationScheme optScheme = this.hcu.getOptimizer().getOptimizationScheme();
  31. switch(optScheme) {
  32. case COMFORT:
  33. assembleTargetStateComfort(timeStep);
  34. break;
  35. case MIN_COST:
  36. break;
  37. case ENERGY_CONSUMPTION:
  38. break;
  39. case STABILITY:
  40. assembleTargetStateStability(timeStep);
  41. break;
  42. case RECOVERY:
  43. assembleTargetStateRecovery(timeStep);
  44. break;
  45. default:
  46. System.err.println("Unknown optimization scheme in "+this.hcu.getHolon().getUniqueID());
  47. }
  48. this.hcu.getHierarchyController().propagateMergeReqToParent(timeStep-1);
  49. }
  50. private void assembleTargetStateComfort(int timeStep) {
  51. //overall power usage inside this holarchy
  52. float powerUsage = this.hcu.getStateEstimator().getPowerUsage();
  53. ArrayList<Float> predictedPowerUsage = this.hcu.getStateEstimator().getPredictedPowerUsage();
  54. if(predictedPowerUsage.size() < 1) {
  55. //no more iterations inside simulator
  56. return;
  57. }
  58. //check if this holon can run independent from parent without risking stability
  59. if(this.hcu.matchPowerRange(powerUsage, 0f, predictedPowerUsage, this.hcu.getOptimizer().getCurrentPowerThreshold())
  60. && this.hcu.getHolon().getParent().canRunIndependent(this.hcu.getHolon()) && this.hcu.getHolon().getLayer() > 1) {
  61. // System.out.println(this.hcu.getHolon().getUniqueID()+" can run independent");
  62. this.hcu.getHierarchyController().splitSuperHolon(timeStep);
  63. this.desiredPowerUsage = 0f;
  64. orderSubholonsPredictedPower(timeStep);
  65. return;
  66. }
  67. //powerUsage already matches desired value, everything as before
  68. if(this.hcu.matchPowerRange(powerUsage, this.desiredPowerUsage, this.hcu.getOptimizer().getCurrentPowerThreshold())) {
  69. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage as desired "+powerUsage);
  70. orderSubholonsPredictedPower(timeStep);
  71. return;
  72. }
  73. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage "+powerUsage+" not as desired "+this.desiredPowerUsage);
  74. float requiredPower = this.desiredPowerUsage - powerUsage;
  75. //find flexibility which matches required power
  76. float savedWithFlexibilities = this.hcu.getFlexMan().applyFlexibilities(powerUsage, requiredPower, predictedPowerUsage, timeStep);
  77. if(savedWithFlexibilities == requiredPower) {
  78. orderSubholonsPredictedPower(timeStep);
  79. return;
  80. }
  81. requiredPower -= savedWithFlexibilities;
  82. //go through merge requests from last iteration
  83. float savedByMerging = gothroughMergeReq(timeStep, powerUsage, requiredPower, predictedPowerUsage, OptimizationScheme.COMFORT);
  84. if(savedByMerging == requiredPower) {
  85. orderSubholonsPredictedPower(timeStep);
  86. return;
  87. }
  88. requiredPower -= savedByMerging;
  89. //look out for another superholon
  90. findNewSuperHolon(timeStep, powerUsage, predictedPowerUsage);
  91. //tell all holons to use a little more/less energy
  92. orderSubholonsRequiredPower(timeStep, powerUsage, requiredPower);
  93. }
  94. private void assembleTargetStateStability(int timeStep) {
  95. //overall power usage inside this holarchy
  96. float powerUsage = this.hcu.getStateEstimator().getPowerUsage();
  97. ArrayList<Float> predictedPowerUsage = this.hcu.getStateEstimator().getPredictedPowerUsage();
  98. if(predictedPowerUsage.size() < 1) {
  99. //no more iterations inside simulator
  100. return;
  101. }
  102. //powerUsage already matches desired value, everything as before
  103. if(this.hcu.matchPowerRange(powerUsage, this.desiredPowerUsage, this.hcu.getOptimizer().getCurrentPowerThreshold())) {
  104. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage as desired "+powerUsage);
  105. orderSubholonsPredictedPower(timeStep);
  106. return;
  107. }
  108. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage "+powerUsage+" not as desired "+this.desiredPowerUsage);
  109. float requiredPower = this.desiredPowerUsage - powerUsage;
  110. //find flexibility which matches required power
  111. float savedWithFlexibilities = this.hcu.getFlexMan().applyFlexibilities(powerUsage, requiredPower, predictedPowerUsage, timeStep);
  112. if(savedWithFlexibilities == requiredPower) {
  113. orderSubholonsPredictedPower(timeStep);
  114. return;
  115. }
  116. requiredPower -= savedWithFlexibilities;
  117. //go through merge requests from last iteration
  118. float savedByMerging = gothroughMergeReq(timeStep, powerUsage, requiredPower, predictedPowerUsage, OptimizationScheme.STABILITY);
  119. if(savedByMerging == requiredPower) {
  120. orderSubholonsPredictedPower(timeStep);
  121. return;
  122. }
  123. requiredPower -= savedByMerging;
  124. //look out for another superholon
  125. findNewSuperHolon(timeStep, powerUsage, predictedPowerUsage);
  126. //tell all holons to use a little more/less energy
  127. orderSubholonsRequiredPower(timeStep, powerUsage, requiredPower);
  128. }
  129. private void assembleTargetStateRecovery(int timeStep) {
  130. //overall power usage inside this holarchy
  131. float powerUsage = this.hcu.getStateEstimator().getPowerUsage();
  132. ArrayList<Float> predictedPowerUsage = this.hcu.getStateEstimator().getPredictedPowerUsage();
  133. if(predictedPowerUsage.size() < 1) {
  134. //no more iterations inside simulator
  135. return;
  136. }
  137. //powerUsage already matches desired value, everything as before
  138. if(this.hcu.matchPowerRange(powerUsage, this.desiredPowerUsage, this.hcu.getOptimizer().getCurrentPowerThreshold())) {
  139. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage as desired "+powerUsage);
  140. orderSubholonsPredictedPower(timeStep);
  141. return;
  142. }
  143. // System.out.println(this.hcu.getHolon().getUniqueID()+" power usage "+powerUsage+" not as desired "+this.desiredPowerUsage);
  144. float requiredPower = this.desiredPowerUsage - powerUsage;
  145. //find flexibility which matches required power
  146. float savedWithFlexibilities = this.hcu.getFlexMan().applyFlexibilities(powerUsage, requiredPower, predictedPowerUsage, timeStep);
  147. if(savedWithFlexibilities == requiredPower) {
  148. orderSubholonsPredictedPower(timeStep);
  149. return;
  150. }
  151. requiredPower -= savedWithFlexibilities;
  152. //go through merge requests from last iteration
  153. float savedByMerging = gothroughMergeReq(timeStep, powerUsage, requiredPower, predictedPowerUsage, OptimizationScheme.RECOVERY);
  154. if(savedByMerging == requiredPower) {
  155. orderSubholonsPredictedPower(timeStep);
  156. return;
  157. }
  158. requiredPower -= savedByMerging;
  159. // float p = this.hcu.getHolon().isPhysical ? this.hcu.getHolon().getHolonObject().getEnergyAtTimeStepFlex(timeStep) : 0f;
  160. // requiredPower = this.desiredPowerUsage - p;
  161. //split dysfunctional parts
  162. HashMap<String, StateMsg> childStates = this.hcu.getStateEstimator().getChildStates();
  163. List<List<String>> childPerm = getAllPermutations(List.copyOf(childStates.keySet()));
  164. HashMap<Float, List<String>> potChild = new HashMap<Float, List<String>>();
  165. for(List<String> l : childPerm) {
  166. //check how much power this subset of child would consume
  167. Float[] savings = new Float[predictedPowerUsage.size()+1];
  168. for(int i=0; i<savings.length; i++)
  169. savings[i] = 0f;
  170. for(String s : l) {
  171. StateMsg state = childStates.get(s);
  172. // if(!this.hcu.decreasesPowerUsage(List.of(savings), powerUsage, predictedPowerUsage, this.desiredPowerUsage))
  173. // break;
  174. savings[0] = savings[0] + state.getPowerUsage();
  175. for(int i=1; i<savings.length; i++) {
  176. savings[i] += state.getPredictedPowerUsage().get(i-1);
  177. }
  178. }
  179. if(this.hcu.decreasesPowerUsage(List.of(savings), powerUsage, predictedPowerUsage, this.desiredPowerUsage)) {
  180. float pu = 0f;
  181. for(int i=0; i<savings.length; i++)
  182. pu += savings[i];
  183. pu = pu/savings.length;
  184. if(potChild.containsKey(pu) && potChild.get(pu).size() >= l.size())
  185. continue;
  186. potChild.put(pu, l);
  187. }
  188. }
  189. //find subset of children with most fitting powerUsage
  190. float min = Float.MAX_VALUE;
  191. //the required power usage without any child holons
  192. float r = this.desiredPowerUsage - this.hcu.getHolon().getHolonObject().getEnergyAtTimeStepFlex(timeStep);
  193. for(float f : potChild.keySet()) {
  194. if(Math.abs(f+r) < Math.abs(min+r)) {
  195. min = f;
  196. }
  197. }
  198. //split all other subholons
  199. List<String> list = new ArrayList<String>();
  200. if(potChild.containsKey(min)) {
  201. list = potChild.get(min);
  202. }
  203. List<String> subs = List.copyOf(this.hcu.getHierarchyController().getSubHolons());
  204. for(String s : subs) {
  205. if(!list.contains(s)) {
  206. this.hcu.getHierarchyController().splitSubHolon(s, timeStep);
  207. // requiredPower -= childStates.getOrDefault(s, new StateMsg(0f, 0f, null, null)).getPowerUsage();
  208. }
  209. }
  210. requiredPower = r + min;
  211. if(requiredPower == 0) {
  212. //by removing child holons we have regained stability
  213. orderSubholonsPredictedPower(timeStep);
  214. return;
  215. }
  216. //Split from superholon?
  217. if(Math.abs(requiredPower) > Math.abs(powerUsage) && this.hcu.getHolon().getLayer() > 1) {
  218. // System.out.println("----"+requiredPower+" "+powerUsage);
  219. this.hcu.getHierarchyController().splitSuperHolon(timeStep);
  220. orderSubholonsRequiredPower(timeStep, powerUsage, 0f-powerUsage);
  221. return;
  222. }
  223. //look out for another superholon
  224. findNewSuperHolon(timeStep, powerUsage, predictedPowerUsage);
  225. //tell all holons to use a little more/less energy
  226. orderSubholonsRequiredPower(timeStep, powerUsage, requiredPower);
  227. }
  228. /**
  229. * go through all previously received merge requests from other holons
  230. * if there is a fitting one merge
  231. * @param timeStep
  232. * @param requiredPower
  233. * @return saved power
  234. */
  235. private float gothroughMergeReq(int timeStep, float currentPower, float requiredPower, ArrayList<Float> predictedPower,
  236. OptimizationScheme optScheme) {
  237. List<MergeMsg> requests = this.hcu.getHierarchyController().getMergeRequestsForTimeStep(timeStep-1);
  238. if(requests == null)
  239. return 0f;
  240. //store holon which would help decrease |requiredPower|
  241. ArrayList<MergeMsg> poten = new ArrayList<MergeMsg>();
  242. //find a perfect match or holon which would help decrease |requiredPower|
  243. for(MergeMsg req : requests) {
  244. float r = req.getPredictedPowerUsage().get(0); //since merge req is from timeStep-1
  245. String requester = req.getRequester();
  246. float newThroughput = req.getNetThroughput() + this.hcu.getStateEstimator().getNetThroughput();
  247. if(!this.hcu.getHierarchyController().canMerge(requester, newThroughput)) {
  248. //cannot merge with the requester
  249. continue;
  250. }
  251. // System.out.println(this.hcu.getHolon().getUniqueID()+" merge req "+req.getPower()+" "
  252. // +this.hcu.matchPowerRange(r, requiredPower, predictedPower, this.hcu.getOptimizer().getCurrentPowerThreshold()));
  253. if(this.hcu.matchPowerRange(r, requiredPower, predictedPower, this.hcu.getOptimizer().getCurrentPowerThreshold())) {
  254. //perfect match
  255. this.hcu.getHierarchyController().sendMergeAck(timeStep, req, true);
  256. // OrderMsg o = new OrderMsg(r, optScheme, timeStep);
  257. // this.ordersForSubholon.put(requester, o);
  258. requests.remove(req);
  259. return r;
  260. }
  261. // } else if( ((r < 0 && requiredPower < 0) || (r > 0 && requiredPower > 0))
  262. // && this.hcu.decreasesPowerUsage(req.getPredictedPowerUsage(), currentPower, predictedPower, requiredPower)) {
  263. //accepting this request would help this holon
  264. poten.add(req);
  265. // }
  266. }
  267. //go through all poten candidates and find most suiting subset
  268. //all candidates have either power < 0 or > 0
  269. if(poten.size() < 1)
  270. return 0f;
  271. List<List<MergeMsg>> potPermut = getAllPermutations(poten);
  272. HashMap<Float, List<MergeMsg>> potSavings = new HashMap<Float, List<MergeMsg>>();
  273. for(List<MergeMsg> l : potPermut) {
  274. //check how much power this subset of merges would save
  275. Float[] savings = new Float[predictedPower.size()];
  276. for(int i=0; i<savings.length; i++)
  277. savings[i] = 0f;
  278. for(MergeMsg m : l) {
  279. // if(!this.hcu.decreasesPowerUsage(List.of(savings), currentPower, predictedPower, requiredPower))
  280. // break;
  281. for(int i=0; i<savings.length; i++) {
  282. savings[i] = savings[i] + m.getPredictedPowerUsage().get(i);
  283. }
  284. }
  285. // System.out.println("l "+l+"\nsaving: "+savings[0]);
  286. if(this.hcu.decreasesPowerUsage(List.of(savings), currentPower, predictedPower, requiredPower)) {
  287. float s = 0f;
  288. for(int i=0; i<savings.length; i++)
  289. s += savings[i];
  290. s = s/savings.length; //average saving over the next time periods
  291. if(potSavings.containsKey(s) && potSavings.get(s).size() >= l.size())
  292. continue;
  293. potSavings.put(s, l);
  294. }
  295. }
  296. if(potSavings.size() < 1) {
  297. return 0f;
  298. }
  299. float min = Float.MAX_VALUE;
  300. for(float f : potSavings.keySet()) {
  301. // System.out.println(requiredPower+" "+currentPower+" "+min+" "+f+" "+Math.abs(requiredPower-f)+" < "+Math.abs(requiredPower-min));
  302. if(Math.abs(requiredPower-f) < Math.abs(requiredPower-min)) {
  303. min = f;
  304. }
  305. }
  306. // System.out.println("min "+min);
  307. // System.out.println(potSavings.keySet());
  308. //merge with all holons that are part of the subset with the max saving
  309. if(potSavings.containsKey(min)) {
  310. for(MergeMsg req : potSavings.get(min)) {
  311. // System.out.println("I wanna merge");
  312. // float r = req.getPower();
  313. // String requester = req.getRequester();
  314. this.hcu.getHierarchyController().sendMergeAck(timeStep, req, min == requiredPower);
  315. // OrderMsg o = new OrderMsg(r, optScheme, timeStep);
  316. // this.ordersForSubholon.put(requester, o);
  317. }
  318. //remove merge requests so they don't get propagated to super holon
  319. requests.removeAll(potSavings.get(min));
  320. return min;
  321. }
  322. return 0f;
  323. }
  324. private void findNewSuperHolon(int timeStep, float powerUsage, ArrayList<Float> predictedPowerUsage) {
  325. for(String physicalNeighbor : this.hcu.getHierarchyController().getPhysicalNeighborsFromOtherHolarchy()) {
  326. this.hcu.getHierarchyController().sendMergeReq(powerUsage, predictedPowerUsage, timeStep, physicalNeighbor);
  327. }
  328. }
  329. private void orderSubholonsPredictedPower(int timeStep) {
  330. HashMap<String, StateMsg> childStates = this.hcu.getStateEstimator().getChildStates();
  331. Gson gson = this.hcu.getCommunicator().getGson();
  332. for(String s : childStates.keySet()) {
  333. OrderMsg o = new OrderMsg(childStates.get(s).getPredictedPowerUsage().get(0), timeStep);
  334. // this.ordersForSubholon.put(s, o);
  335. this.hcu.getCommunicator().sendMsg(s, Message.Type.ORDER, gson.toJson(o));
  336. }
  337. }
  338. /**
  339. * compute a new target value for all subholons
  340. * "fairness": all subholons get same target value
  341. * @param timeStep
  342. * @param powerUsage
  343. * @param requiredPower
  344. * @param optScheme
  345. */
  346. private void orderSubholonsRequiredPower(int timeStep, float powerUsage, float requiredPower) {
  347. // float p = this.hcu.getHolon().isPhysical ? this.hcu.getHolon().getHolonObject().getEnergyAtTimeStep(timeStep) : 0f;
  348. // requiredPower = this.desiredPowerUsage - p;
  349. // HashMap<String, StateMsg> childStates = this.hcu.getStateEstimator().getChildStates();
  350. Gson gson = this.hcu.getCommunicator().getGson();
  351. float opt = - requiredPower/this.hcu.getHierarchyController().getSubHolons().size(); //(childStates.size() - this.ordersForSubholon.size() != 0 ? childStates.size() - this.ordersForSubholon.size() : 1);
  352. for(String s : this.hcu.getHierarchyController().getSubHolons()) {
  353. //order for subholon
  354. // if(this.ordersForSubholon.containsKey(s))
  355. // continue;
  356. OrderMsg o = new OrderMsg(opt, timeStep);
  357. // this.ordersForSubholon.put(s, o);
  358. //send order to subholon
  359. this.hcu.getCommunicator().sendMsg(s, Message.Type.ORDER, gson.toJson(o));
  360. }
  361. //send order to subholons
  362. // for(String s : this.ordersForSubholon.keySet()) {
  363. // if(this.hcu.getHierarchyController().getSubHolons().contains(s))
  364. // this.hcu.getCommunicator().sendMsg(s, Message.Type.ORDER, gson.toJson(this.ordersForSubholon.get(s)));
  365. // }
  366. }
  367. private <T> List<List<T>> getAllPermutations(List<T> set){
  368. List<List<T>> out = new ArrayList<List<T>>();
  369. for(int i=0; i<set.size(); i++) {
  370. for(int j=i; j<set.size(); j++) {
  371. List<T> l = new ArrayList<T>();
  372. l.addAll(set.subList(i, j+1));
  373. out.add(l);
  374. }
  375. }
  376. return out;
  377. }
  378. public float getDesiredPowerUsage() {
  379. return this.desiredPowerUsage;
  380. }
  381. public void setOrder(OrderMsg order, String sender) {
  382. // System.out.println(this.hcu.getHolon().getUniqueID()+" received order "+order);
  383. if(sender.equals(this.hcu.getHierarchyController().getSuperHolon())) {
  384. this.order = order;
  385. }
  386. }
  387. }