1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102 |
- package exampleAlgorithms;
- import java.awt.BorderLayout;
- import java.awt.Component;
- import java.awt.Cursor;
- import java.awt.Dimension;
- import java.awt.FlowLayout;
- import java.awt.Font;
- import java.awt.event.ActionListener;
- import java.awt.image.BufferedImage;
- import java.io.BufferedWriter;
- import java.io.File;
- import java.io.FileOutputStream;
- import java.io.IOException;
- import java.io.OutputStreamWriter;
- import java.math.RoundingMode;
- import java.text.NumberFormat;
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.LinkedList;
- import java.util.List;
- import java.util.Locale;
- import java.util.TreeSet;
- import java.util.stream.Collectors;
- import javax.swing.BorderFactory;
- import javax.swing.ButtonGroup;
- import javax.swing.ImageIcon;
- import javax.swing.JButton;
- import javax.swing.JCheckBox;
- import javax.swing.JFileChooser;
- import javax.swing.JFormattedTextField;
- import javax.swing.JFrame;
- import javax.swing.JLabel;
- import javax.swing.JOptionPane;
- import javax.swing.JPanel;
- import javax.swing.JProgressBar;
- import javax.swing.JRadioButton;
- import javax.swing.JScrollPane;
- import javax.swing.JSplitPane;
- import javax.swing.JTextArea;
- import javax.swing.filechooser.FileNameExtensionFilter;
- import javax.swing.text.NumberFormatter;
- import api.Algorithm;
- import classes.AbstractCpsObject;
- import classes.CpsUpperNode;
- import classes.HolonElement;
- import classes.HolonObject;
- import classes.HolonSwitch;
- import ui.controller.Control;
- import ui.model.Model;
- import ui.view.Console;
- import ui.model.DecoratedHolonObject.HolonObjectState;
- import ui.model.DecoratedGroupNode;
- import ui.model.DecoratedNetwork;
- import ui.model.DecoratedState;
- public class PSOAlgorithm implements Algorithm {
- //Parameter for Algo with default Values:
- private int swarmSize = 20;
- private int maxIterations = 100;
- private double limit = 0.01;
- private double dependency = 2.07;
- private int rounds = 20;
- private int mutationInterval = 1;
- private boolean useIntervalMutation = true;
- private double mutateProbabilityInterval = 0.01;
- private double maxMutationPercent = 0.01;
-
-
-
-
- //Settings For GroupNode using and plotting
- private boolean append = false;
- private boolean useGroupNode = false;
- private DecoratedGroupNode dGroupNode = null;
-
- //Parameter defined by Algo
- private HashMap<Integer, AccessWrapper> access;
- LinkedList<List<Boolean>> resetChain = new LinkedList<List<Boolean>>();
- private double c1, c2, w;
- private RunDataBase db;
-
- //Parameter for Plotting (Default Directory in Constructor)
- private JFileChooser fileChooser = new JFileChooser();
-
-
- //Gui Part:
- private Control control;
- private Console console = new Console();
- private JPanel content = new JPanel();
- //ProgressBar
- private JProgressBar progressBar = new JProgressBar();
- private int progressBarCount = 0;
- private long startTime;
- private Thread runThread = new Thread();
- private boolean cancel = false;
-
-
- public static void main(String[] args)
- {
- JFrame newFrame = new JFrame("exampleWindow");
- PSOAlgorithm instance = new PSOAlgorithm();
- newFrame.setContentPane(instance.getAlgorithmPanel());
- newFrame.pack();
- newFrame.setVisible(true);
- newFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
- }
- public PSOAlgorithm() {
- content.setLayout(new BorderLayout());
- JScrollPane scrollPane = new JScrollPane(console);
- JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
- createOptionPanel() , scrollPane);
- splitPane.setResizeWeight(0.0);
- content.add(splitPane, BorderLayout.CENTER);
- content.setPreferredSize(new Dimension(800,800));
- //Default Directory
- fileChooser.setCurrentDirectory(new File(System.getProperty("user.dir")));
- fileChooser.setSelectedFile(new File("plott.txt"));
- }
- public JPanel createOptionPanel() {
- JPanel optionPanel = new JPanel(new BorderLayout());
- JScrollPane scrollPane = new JScrollPane(createParameterPanel());
- scrollPane.setBorder(BorderFactory.createTitledBorder("Parameter"));
- optionPanel.add(scrollPane, BorderLayout.CENTER);
- optionPanel.add(createButtonPanel(), BorderLayout.PAGE_END);
- return optionPanel;
- }
-
- private Component createParameterPanel() {
- JPanel parameterPanel = new JPanel(null);
- parameterPanel.setPreferredSize(new Dimension(510,300));
-
- JLabel info = new JLabel("Tune the variables of the PSO algorithm in order to reach better results.");
- info.setBounds(10, 10, 480, 15);
- parameterPanel.add(info);
-
- JLabel swarmSizeLabel = new JLabel("Swarm Size:");
- swarmSizeLabel.setBounds(20, 60, 100, 20);
- parameterPanel.add(swarmSizeLabel);
-
- JLabel maxIterLabel = new JLabel("Max. Iterations:");
- maxIterLabel.setBounds(20, 85, 100, 20);
- parameterPanel.add(maxIterLabel);
-
- JLabel limitLabel = new JLabel("Limit:");
- limitLabel.setBounds(20, 255, 100, 20);
- parameterPanel.add(limitLabel);
-
- JLabel dependecyLabel = new JLabel("Dependency:");
- dependecyLabel.setBounds(20, 135, 100, 20);
- parameterPanel.add(dependecyLabel);
-
- JLabel roundsLabel = new JLabel("Round:");
- roundsLabel.setBounds(20, 160, 100, 20);
- parameterPanel.add(roundsLabel);
-
- JLabel mutationIntervalLabel = new JLabel("Mutation Interval");
- mutationIntervalLabel.setBounds(20, 185, 100, 20);
- parameterPanel.add(mutationIntervalLabel);
-
- JLabel cautionLabel = new JLabel(
- "Caution: High values in the fields of 'Swarm Size' and 'Max. Iteration' may take some time to calculate.");
- cautionLabel.setFont(new Font("Serif", Font.ITALIC, 12));
- JLabel showDiagnosticsLabel = new JLabel("Append Plott on existing File:");
- showDiagnosticsLabel.setBounds(200, 60, 170, 20);
- parameterPanel.add(showDiagnosticsLabel);
-
- JPanel borderPanel = new JPanel(null);
- borderPanel.setBounds(200, 85, 185, 50);
- borderPanel.setBorder(BorderFactory.createTitledBorder(""));
- parameterPanel.add(borderPanel);
-
- JLabel showGroupNodeLabel = new JLabel("Use Group Node:");
- showGroupNodeLabel.setBounds(10, 1, 170, 20);
- borderPanel.add(showGroupNodeLabel);
-
- JButton selectGroupNodeButton = new JButton("Select GroupNode");
- selectGroupNodeButton.setEnabled(false);
- selectGroupNodeButton.setBounds(10, 25, 165, 20);
- selectGroupNodeButton.addActionListener(actionEvent -> selectGroupNode());
- borderPanel.add(selectGroupNodeButton);
-
- JCheckBox useGroupNodeCheckBox = new JCheckBox();
- useGroupNodeCheckBox.setSelected(false);
- useGroupNodeCheckBox.setBounds(155, 1, 25, 20);
- useGroupNodeCheckBox.addActionListener(actionEvent -> {
- useGroupNode = useGroupNodeCheckBox.isSelected();
- selectGroupNodeButton.setEnabled(useGroupNode);
- });
- borderPanel.add(useGroupNodeCheckBox);
-
- JLabel progressLabel = new JLabel("Progress:");
- progressLabel.setBounds(200, 135, 170, 20);
- parameterPanel.add(progressLabel);
-
- progressBar.setBounds(200, 155, 185, 20);
- progressBar.setStringPainted(true);
- parameterPanel.add(progressBar);
-
- cautionLabel.setBounds(10, 210, 500, 15);
- parameterPanel.add(cautionLabel);
-
- JCheckBox diagnosticsCheckBox = new JCheckBox();
- diagnosticsCheckBox.setSelected(false);
- diagnosticsCheckBox.setBounds(370, 60, 25, 20);
- diagnosticsCheckBox.addActionListener(actionEvent -> append = diagnosticsCheckBox.isSelected());
- parameterPanel.add(diagnosticsCheckBox);
-
-
- //Integer formatter
- NumberFormat format = NumberFormat.getIntegerInstance();
- format.setGroupingUsed(false);
- format.setParseIntegerOnly(true);
- NumberFormatter integerFormatter = new NumberFormatter(format);
- integerFormatter.setMinimum(0);
- integerFormatter.setCommitsOnValidEdit(true);
-
-
- JFormattedTextField swarmSizeTextField = new JFormattedTextField(integerFormatter);
- swarmSizeTextField.setValue(swarmSize);
- swarmSizeTextField.setToolTipText("Only positive Integer.");
- swarmSizeTextField.addPropertyChangeListener(actionEvent -> swarmSize = Integer.parseInt(swarmSizeTextField.getValue().toString()));
- swarmSizeTextField.setBounds(125, 60, 50, 20);
- parameterPanel.add(swarmSizeTextField);
-
- JFormattedTextField maxIterTextField = new JFormattedTextField(integerFormatter);
- maxIterTextField.setValue(maxIterations);
- maxIterTextField.setToolTipText("Only positive Integer.");
- maxIterTextField.addPropertyChangeListener(propertyChange -> maxIterations = Integer.parseInt(maxIterTextField.getValue().toString()));
- maxIterTextField.setBounds(125, 85, 50, 20);
- parameterPanel.add(maxIterTextField);
- //Double Format:
- NumberFormat doubleFormat = NumberFormat.getNumberInstance(Locale.US);
- doubleFormat.setMinimumFractionDigits(1);
- doubleFormat.setMaximumFractionDigits(3);
- doubleFormat.setRoundingMode(RoundingMode.HALF_UP);
- //Limit Formatter:
- NumberFormatter limitFormatter = new NumberFormatter(doubleFormat);
- limitFormatter.setMinimum(0.0);
- limitFormatter.setMaximum(1.0);
-
- JFormattedTextField limitTextField = new JFormattedTextField(limitFormatter);
- limitTextField.setValue(limit);
- limitTextField.setToolTipText("Only Double in range [0.0, 1.0] with DecimalSeperator Point('.').");
- limitTextField.addPropertyChangeListener(propertyChange -> limit = Double.parseDouble(limitTextField.getValue().toString()));
- limitTextField.setBounds(125, 255, 50, 20);
- parameterPanel.add(limitTextField);
-
- //Limit Formatter:
- NumberFormatter dependencyFormatter = new NumberFormatter(doubleFormat);
- dependencyFormatter.setMinimum(2.001);
- dependencyFormatter.setMaximum(2.4);
-
-
- JFormattedTextField dependencyTextField = new JFormattedTextField(dependencyFormatter);
- dependencyTextField.setValue(dependency);
- dependencyTextField.setToolTipText("Only Double in range [2.001, 2.4] with DecimalSeperator Point('.').");
- dependencyTextField.addPropertyChangeListener(propertyChange -> dependency = Double.parseDouble(dependencyTextField.getValue().toString()));
- dependencyTextField.setBounds(125, 135, 50, 20);
- parameterPanel.add(dependencyTextField);
-
- NumberFormatter roundsFormatter = new NumberFormatter(format);
- roundsFormatter.setMinimum(1);
- roundsFormatter.setCommitsOnValidEdit(true);
-
- JFormattedTextField roundsTextField = new JFormattedTextField(roundsFormatter);
- roundsTextField.setValue(rounds);
- roundsTextField.setToolTipText("Number of algorithm repetitions for the same starting situation ");
- roundsTextField.addPropertyChangeListener(propertyChange -> rounds = Integer.parseInt((roundsTextField.getValue().toString())));
- roundsTextField.setBounds(125, 160, 50, 20);
- parameterPanel.add(roundsTextField);
- //--- subsequently Rolf Did stuff ------------------------------------------------------------------------------------------
- /*NumberFormatter mutationIntervalFormatter = new NumberFormatter(inte);
- mutationIntervalFormatter.setMinimum(0);
- mutationIntervalFormatter.setMaximum(maxIterations);
- mutationIntervalFormatter.setCommitsOnValidEdit(true);*/
-
- NumberFormatter mutationFormatter = new NumberFormatter(format);
- mutationFormatter.setMinimum(1);
- mutationFormatter.setCommitsOnValidEdit(true);
- JFormattedTextField mutationIntervalTextfield = new JFormattedTextField(mutationFormatter);
- mutationIntervalTextfield.setValue(mutationInterval);
- mutationIntervalTextfield.setToolTipText("The number of Iterations after which one mutation iteration is conducted");
- mutationIntervalTextfield.addPropertyChangeListener(propertyChange -> mutationInterval = Integer.parseInt((mutationIntervalTextfield.getValue().toString())));
- mutationIntervalTextfield.setBounds(125, 185, 50, 20);
- parameterPanel.add(mutationIntervalTextfield);
- //--- previously Rolf Did stuff ------------------------------------------------------------------------------------------
-
-
-
-
- JLabel mutationIntervallLabel = new JLabel("MutationRate:");
- mutationIntervallLabel.setBounds(220, 255, 150, 20);
- mutationIntervallLabel.setEnabled(useIntervalMutation);
- parameterPanel.add(mutationIntervallLabel);
-
-
-
- JFormattedTextField mutationRateField = new JFormattedTextField(limitFormatter);
- mutationRateField.setValue(this.mutateProbabilityInterval);
- mutationRateField.setEnabled(this.useIntervalMutation);
- mutationRateField.setToolTipText("Only Double in range [0.0, 1.0] with DecimalSeperator Point('.').");
- mutationRateField.addPropertyChangeListener(propertyChange -> this.mutateProbabilityInterval = Double.parseDouble(mutationRateField.getValue().toString()));
- mutationRateField.setBounds(400, 255, 50, 20);
- parameterPanel.add(mutationRateField);
-
- JLabel maxMutationPercentLabel = new JLabel("Max Mutation Percent:");
- maxMutationPercentLabel.setBounds(220, 280, 200, 20);
- maxMutationPercentLabel.setEnabled(useIntervalMutation);
- parameterPanel.add(maxMutationPercentLabel);
-
- JFormattedTextField mutationMaxField = new JFormattedTextField(limitFormatter);
- mutationMaxField.setValue(this.maxMutationPercent);
- mutationMaxField.setEnabled(this.useIntervalMutation);
- mutationMaxField.setToolTipText("Only Double in range [0.0, 1.0] with DecimalSeperator Point('.').");
- mutationMaxField.addPropertyChangeListener(propertyChange -> this.maxMutationPercent = Double.parseDouble(mutationMaxField.getValue().toString()));
- mutationMaxField.setBounds(400, 280, 50, 20);
- parameterPanel.add(mutationMaxField);
-
-
-
- JRadioButton jRadioMutate = new JRadioButton("Normal Mutate");
- jRadioMutate.setBounds(20, 230, 200, 20);
- jRadioMutate.setSelected(!useIntervalMutation);
- jRadioMutate.setActionCommand("normal");
- parameterPanel.add(jRadioMutate);
-
- JRadioButton jRadioMutateInterval = new JRadioButton("Mutate Interval");
- jRadioMutateInterval.setBounds(220, 230, 200, 20);
- jRadioMutateInterval.setActionCommand("intervall");
- jRadioMutateInterval.setSelected(useIntervalMutation);
- parameterPanel.add(jRadioMutateInterval);
-
- ButtonGroup group = new ButtonGroup();
- group.add(jRadioMutate);
- group.add(jRadioMutateInterval);
- ActionListener radioListener = e -> {
- if(e.getActionCommand() == "normal") {
- this.useIntervalMutation = false;
- limitTextField.setEnabled(true);
- limitLabel.setEnabled(true);
- mutationIntervallLabel.setEnabled(false);
- mutationRateField.setEnabled(false);
- maxMutationPercentLabel.setEnabled(false);
- mutationMaxField.setEnabled(false);
-
- }else if(e.getActionCommand() == "intervall") {
- this.useIntervalMutation = true;
- limitTextField.setEnabled(false);
- limitLabel.setEnabled(false);
- mutationIntervallLabel.setEnabled(true);
- mutationRateField.setEnabled(true);
- maxMutationPercentLabel.setEnabled(true);
- mutationMaxField.setEnabled(true);
- }
- };
- jRadioMutate.addActionListener(radioListener);
- jRadioMutateInterval.addActionListener(radioListener);
-
-
- return parameterPanel;
- }
- public JPanel createButtonPanel() {
- JPanel buttonPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
-
- JButton cancelButton = new JButton("Cancel Run");
- cancelButton.addActionListener(actionEvent -> cancel());
- buttonPanel.add(cancelButton);
- JButton folderButton = new JButton("Change Plott-File");
- folderButton.addActionListener(actionEvent -> setSaveFile());
- buttonPanel.add(folderButton);
- JButton fitnessButton = new JButton("Actual Fitness");
- fitnessButton.addActionListener(actionEvent -> fitness());
- buttonPanel.add(fitnessButton);
- JButton plottButton = new JButton("Plott");
- plottButton.addActionListener(actionEvent -> plott());
- buttonPanel.add(plottButton);
- JButton resetButton = new JButton("Reset");
- resetButton.setToolTipText("Resets the State to before the Algorithm has runed.");
- resetButton.addActionListener(actionEvent -> resetAll());
- buttonPanel.add(resetButton);
- JButton runButton = new JButton("Run");
- runButton.addActionListener(actionEvent -> {
- Runnable task = () -> run();
- runThread = new Thread(task);
- runThread.start();
- });
- buttonPanel.add(runButton);
- return buttonPanel;
- }
- private void run() {
- cancel = false;
- disableGuiInput(true);
- startTimer();
- executePsoAlgoWithCurrentParameters();
- if(cancel) {
- resetLast();
- disableGuiInput(false);
- return;
- }
- printElapsedTime();
- disableGuiInput(false);
- }
- private void disableGuiInput(boolean bool) {
- control.guiDiable(bool);
- }
-
- private void cancel() {
- if(runThread.isAlive()) {
- console.println("");
- console.println("Cancel run.");
- cancel = true;
- progressBar.setValue(0);
- } else {
- console.println("Nothing to cancel.");
- }
- }
- private void fitness() {
- if(runThread.isAlive()) {
- console.println("Run have to be cancelled First.");
- return;
- }
- initDependentParameter();
- double currentFitness = evaluatePosition(extractPositionAndAccess(control.getModel()), false);
- resetChain.removeLast();
- console.println("Actual Fitnessvalue: " + currentFitness);
- }
- private void setSaveFile() {
- fileChooser.setFileFilter(new FileNameExtensionFilter("File", "txt"));
- fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
- int result = fileChooser.showSaveDialog(content);
- if(result == JFileChooser.APPROVE_OPTION) {
- console.println("Set save File to:" + fileChooser.getSelectedFile().getAbsolutePath());
- }
-
- }
- private void plott() {
- if(db!=null) {
- console.println("Plott..");
- db.initFileStream();
- }else {
- console.println("No run inistialized.");
- }
- }
-
-
- private void resetLast() {
- if(runThread.isAlive()) {
- console.println("Run have to be cancelled First.");
- return;
- }
- if(!resetChain.isEmpty()) {
- console.println("Resetting..");
- resetState();
- resetChain.removeLast();
- control.resetSimulation();
- updateVisual();
- }else {
- console.println("No run inistialized.");
- }
- }
-
- private void resetAll() {
- if(runThread.isAlive()) {
- console.println("Run have to be cancelled First.");
- return;
- }
- if(!resetChain.isEmpty()) {
- console.println("Resetting..");
- setState(resetChain.getFirst());
- resetChain.clear();
- control.resetSimulation();
- control.setCurIteration(0);
- updateVisual();
- }else {
- console.println("No run inistialized.");
- }
- }
- private void printParameter() {
- console.println("SwarmSize:" + swarmSize + ", MaxIter:" + maxIterations + ", Limit:" + limit + ", Dependency:" + dependency + ", Rounds:" + rounds +", DependentParameter: w:"+ w + ", c1:" + c1 + ", c2:" + c2 );
- }
- @Override
- public JPanel getAlgorithmPanel() {
- return content;
- }
- @Override
- public void setController(Control control) {
- this.control = control;
-
- }
- private void selectGroupNode() {
- Object[] possibilities = control.getSimManager().getActualVisualRepresentationalState().getCreatedGroupNodes().values().stream().map(aCps -> new Handle<DecoratedGroupNode>(aCps)).toArray();
- @SuppressWarnings("unchecked")
- Handle<DecoratedGroupNode> selected = (Handle<DecoratedGroupNode>) JOptionPane.showInputDialog(content, "Select GroupNode:", "GroupNode?", JOptionPane.OK_OPTION,new ImageIcon(new BufferedImage(1, 1, BufferedImage.TYPE_INT_ARGB)) , possibilities, "");
- if(selected != null) {
- console.println("Selected: " + selected);
- dGroupNode = selected.object;
- }
- }
- private void progressBarStep(){
- progressBar.setValue(++progressBarCount);
- }
- private void calculateProgressBarParameter() {
- int max = swarmSize * (maxIterations + 1)* rounds + rounds;
- progressBarCount = 0;
- progressBar.setValue(0);
- progressBar.setMaximum(max);
- }
-
- private void startTimer(){
- startTime = System.currentTimeMillis();
- }
- private void printElapsedTime(){
- long elapsedMilliSeconds = System.currentTimeMillis() - startTime;
- console.println("Execution Time of Algo in Milliseconds:" + elapsedMilliSeconds);
- }
-
-
-
-
- //Algo Part:
- /**
- * The Execution of the Algo its initialize the missing parameter and execute single Algo runs successively.
- */
- private void executePsoAlgoWithCurrentParameters() {
- initDependentParameter();
- calculateProgressBarParameter();
- printParameter();
- Best runBest = new Best();
- runBest.value = Double.MAX_VALUE;
- db = new RunDataBase();
- for(int r = 0; r < rounds; r++)
- {
-
- List<Double> runList = db.insertNewRun();
- Best lastRunBest = executePSOoneTime(runList);
- if(cancel)return;
- resetState();
- if(lastRunBest.value < runBest.value) runBest = lastRunBest;
- }
- console.println("AlgoResult:" + runBest.value);
- //console.println("[" + lastRunBest.position.stream().map(Object::toString).collect(Collectors.joining(", ")) + "]");
- setState(runBest.position);
- updateVisual();
- }
- /**
- * Calculate w, c1, c2
- */
- private void initDependentParameter() {
- w = 1.0 / (dependency - 1 + Math.sqrt(dependency * dependency - 2 * dependency));
- c1 = c2 = dependency * w;
- }
- /**
- * <p>Algo from Paper:</p><font size="3"><pre>
- *
- * Begin
- * t = 0; {t: generation index}
- * initialize particles x<sub>p,i,j</sub>(t);
- * evaluation x<sub>p,i,j</sub>(t);
- * while (termination condition ≠ true) do
- * v<sub>i,j</sub>(t) = update v<sub>i,j</sub>(t); {by Eq. (6)}
- * x<sub>g,i,j</sub>(t) = update x<sub>g,i,j</sub>(t); {by Eq. (7)}
- * x<sub>g,i,j</sub>(t) = mutation x<sub>g,i,j</sub>(t); {by Eq. (11)}
- * x<sub>p,i,j</sub>(t) = decode x<sub>g,i,j</sub>(t); {by Eqs. (8) and (9)}
- * evaluate x<sub>p,i,j</sub>(t);
- * t = t + 1;
- * end while
- * End</pre></font>
- * <p>with:</p><font size="3">
- *
- * x<sub>g,i,j</sub>: genotype ->genetic information -> in continuous space<br>
- * x<sub>p,i,j</sub>: phenotype -> observable characteristics-> in binary space<br>
- * X<sub>g,max</sub>: is the Maximum here set to 4.<br>
- * Eq. (6):v<sub>i,j</sub>(t + 1) = wv<sub>i,j</sub>+c<sub>1</sub>R<sub>1</sub>(P<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))+c<sub>2</sub>R<sub>2</sub>(g<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))<br>
- * Eq. (7):x<sub>g,i,j</sub>(t + 1) = x<sub>g,i,j</sub>(t) + v<sub>i,j</sub>(t + 1)<br>
- * Eq. (11):<b>if(</b>rand()<r<sub>mu</sub><b>)then</b> x<sub>g,i,j</sub>(t + 1) = -x<sub>g,i,j</sub>(t + 1)<br>
- * Eq. (8):x<sub>p,i,j</sub>(t + 1) = <b>(</b>rand() < S(x<sub>g,i,j</sub>(t + 1))<b>) ?</b> 1 <b>:</b> 0<br>
- * Eq. (9) Sigmoid:S(x<sub>g,i,j</sub>(t + 1)) := 1/(1 + e<sup>-x<sub>g,i,j</sub>(t + 1)</sup>)<br></font>
- * <p>Parameter:</p>
- * w inertia, calculated from phi(Variable:{@link #dependency})<br>
- * c1: influence, calculated from phi(Variable:{@link #dependency}) <br>
- * c2: influence, calculated from phi(Variable:{@link #dependency})<br>
- * r<sub>mu</sub>: probability that the proposed operation is conducted defined by limit(Variable:{@link #limit})<br>
- *
- *
- */
- private Best executePSOoneTime(List<Double> runList) {
- Best globalBest = new Best();
- globalBest.position = extractPositionAndAccess(control.getModel());
- globalBest.value = evaluatePosition(globalBest.position, true);
- console.println("Start Value:" + globalBest.value);
- int dimensions = globalBest.position.size();
- List<Particle> swarm= initializeParticles(dimensions);
- runList.add(globalBest.value);
- evaluation(globalBest, swarm);
- runList.add(globalBest.value);
- for (int iteration = 0; iteration < maxIterations ; iteration++) {
- int mutationAllowed = iteration % mutationInterval;
- for (int particleNumber = 0; particleNumber < swarmSize; particleNumber++) {
- Particle particle = swarm.get(particleNumber);
-
- if(this.useIntervalMutation) {
- boolean allowMutation = (Random.nextDouble() < this.mutateProbabilityInterval);
- TreeSet<Integer> mutationLocation = null;
- if(allowMutation)mutationLocation = locationsToMutate(dimensions);
- for(int index = 0; index < dimensions; index++) {
- updateVelocity(particle, index, globalBest);
- updateGenotype(particle, index);
- if(allowMutation &&mutationAllowed == 0 && iteration != 0 && mutationLocation.contains(index))mutation(particle, index);
- decode(particle, index);
- }
- }else {
- for(int index = 0; index < dimensions; index++) {
- updateVelocity(particle, index, globalBest);
- updateGenotype(particle, index);
- if(mutationAllowed == 0 && iteration != 0)mutation(particle, index);
- decode(particle, index);
- }
- }
- }
- if(cancel)return null;
- evaluation(globalBest, swarm);
- runList.add(globalBest.value);
- }
- console.println(" End Value:" + globalBest.value);
- return globalBest;
- }
- private TreeSet<Integer> locationsToMutate(int dimensions) {
- TreeSet<Integer> mutationLocation = new TreeSet<Integer>(); //sortedSet
- int maximumAmountOfMutatedBits = Math.max(1, (int)Math.round(((double) dimensions) * this.maxMutationPercent));
- int randomUniformAmountOfMutatedValues = Random.nextIntegerInRange(1,maximumAmountOfMutatedBits + 1);
- for(int i = 0; i< randomUniformAmountOfMutatedValues; i++) {
- boolean success = mutationLocation.add(Random.nextIntegerInRange(0, dimensions));
- if(!success) i--; //can be add up to some series long loops if maximumAmountOfMutatedBits get closed to problemsize.
- }
- //console.println(mutationLocation.toString());
- return mutationLocation;
- }
- /**
- * Eq. (6):v<sub>i,j</sub>(t + 1) = wv<sub>i,j</sub>+c<sub>1</sub>R<sub>1</sub>(P<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))+c<sub>2</sub>R<sub>2</sub>(g<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))<br>
- * @param particle
- * @param index
- * @param globalBest
- */
- private void updateVelocity(Particle particle, int index, Best globalBest) {
- double r1 = Random.nextDouble();
- double r2 = Random.nextDouble();
- double posValue = particle.xPhenotype.get(index)?1.0:0.0;
- particle.velocity.set(index, clamp(w*particle.velocity.get(index) + c1*r1*((particle.localBest.position.get(index)?1.0:0.0) - posValue) + c2*r2*((globalBest.position.get(index)?1.0:0.0)- posValue)) );
- }
- /**
- * Eq. (7):x<sub>g,i,j</sub>(t + 1) = x<sub>g,i,j</sub>(t) + v<sub>i,j</sub>(t + 1)<br>
- * @param particle
- * @param index
- */
- private void updateGenotype(Particle particle, int index) {
- particle.xGenotype.set(index, clamp(particle.xGenotype.get(index) + particle.velocity.get(index)));
- }
- /**
- * Eq. (11):<b>if(</b>rand()<r<sub>mu</sub><b>)then</b> x<sub>g,i,j</sub>(t + 1) = -x<sub>g,i,j</sub>(t + 1)<br>
- * @param particle
- * @param index
- */
- private void mutation(Particle particle, int index) {
- if(Random.nextDouble() < limit) particle.xGenotype.set(index, -particle.xGenotype.get(index));
- }
- /**
- * Eq. (8):x<sub>p,i,j</sub>(t + 1) = <b>(</b>rand() < S(x<sub>g,i,j</sub>(t + 1))<b>) ?</b> 1 <b>:</b> 0<br>
- * @param particle
- * @param index
- */
- private void decode(Particle particle, int index) {
- particle.xPhenotype.set(index, Random.nextDouble() < Sigmoid(particle.xGenotype.get(index)));
- }
- /**
- * Eq. (9) Sigmoid:S(x<sub>g,i,j</sub>(t + 1)) := 1/(1 + e<sup>-x<sub>g,i,j</sub>(t + 1)</sup>)<br></font>
- * @param value
- * @return
- */
- private double Sigmoid(double value) {
- return 1.0 / (1.0 + Math.exp(-value));
- }
- /**
- * To clamp X<sub>g,j,i</sub> and v<sub>i,j</sub> in Range [-X<sub>g,max</sub>|+X<sub>g,max</sub>] with {X<sub>g,max</sub>= 4}
- * @param value
- * @return
- */
- private double clamp(double value) {
- return Math.max(-4.0, Math.min(4.0, value));
- }
- /**
- *
- * @param j maximum index of position in the particle
- * @return
- */
- private List<Particle> initializeParticles(int j) {
- List<Particle> swarm = new ArrayList<Particle>();
- //Create The Particle
- for (int particleNumber = 0; particleNumber < swarmSize; particleNumber++){
- //Create a Random position
- List<Boolean> aRandomPosition = new ArrayList<Boolean>();
- for (int index = 0; index < j; index++){
- aRandomPosition.add(Random.nextBoolean());
- }
- swarm.add(new Particle(aRandomPosition));
- }
- return swarm;
- }
- /**
- * Evaluate each particle and update the global Best position;
- * @param globalBest
- * @param swarm
- */
- private void evaluation(Best globalBest, List<Particle> swarm) {
- for(Particle p: swarm) {
- double localEvaluationValue = evaluatePosition(p.xPhenotype, true);
- p.checkNewEvaluationValue(localEvaluationValue);
- if(localEvaluationValue < globalBest.value) {
- globalBest.value = localEvaluationValue;
- globalBest.position = p.localBest.position;
- }
- }
- }
- /**
- * Evaluate a position.
- * @param position
- * @return
- */
- private double evaluatePosition(List<Boolean> position, boolean doIncreaseCounter) {
- setState(position);
- if(doIncreaseCounter)progressBarStep();
- control.calculateStateOnlyForCurrentTimeStep();
- DecoratedState actualstate = control.getSimManager().getActualDecorState();
- return getFitnessValueForState(actualstate);
- }
- /**
- * Calculate the Fitness(Penelty) Value for a state (alias the calculated Position).
- * TODO: Make me better Rolf.
- * @param state
- * @return
- */
- public static double getFitnessValueForState(DecoratedState state) {
- double fitness = 0.0;
- double nw_fitness =0.0;
- double object_fitness = 0.0;
-
- // calculate network_fitness
- for(DecoratedNetwork net : state.getNetworkList()) {
- float production = net.getSupplierList().stream().map(supplier -> supplier.getEnergyToSupplyNetwork()).reduce(0.0f, (a, b) -> a + b);
- float consumption = net.getConsumerList().stream().map(con -> con.getEnergyNeededFromNetwork()).reduce(0.0f, (a, b) -> a + b);
- nw_fitness += Math.abs((production - consumption)/100); //Energy is now everywhere positive
- }
-
- // calculate object_fitness
- for(DecoratedNetwork net : state.getNetworkList()) {
- object_fitness += net.getConsumerList().stream().map(con -> holonObjectSupplyPenaltyFunction(con.getSupplyBarPercentage()) + inactiveHolonElementPenalty(con.getModel())).reduce(0.0, (a, b) -> (a + b));
- //warum war das im network fitness und nicht hier im Object fitness??
- object_fitness += net.getConsumerList().stream().map(con -> StateToDouble(con.getState())).reduce(0.0, (a,b) -> (a+b));
- //System.out.console.println("objectfitness for statestuff: " + object_fitness);
- //object_fitness += net.getPassivNoEnergyList().stream().map(con -> 1000.0).reduce(0.0, (a, b) -> (a + b));
- object_fitness += net.getPassivNoEnergyList().stream().map(sup -> inactiveHolonElementPenalty(sup.getModel())).reduce(0.0, (a, b) -> (a + b));
- object_fitness += net.getSupplierList().stream().map(sup -> inactiveHolonElementPenalty(sup.getModel())).reduce(0.0, (a, b) -> (a + b));
- object_fitness += net.getConsumerSelfSuppliedList().stream().map(con -> inactiveHolonElementPenalty(con.getModel())).reduce(0.0, (a, b) -> (a + b));
- }
- fitness = nw_fitness + object_fitness;
- return fitness;
- }
-
- /**
- * Untouched:
- * Function that returns the fitness depending on the number of elements deactivated in a single holon object
- * @param obj Holon Object that contains Holon Elements
- * @return fitness value for that object depending on the number of deactivated holon elements
- */
- private static double inactiveHolonElementPenalty(HolonObject obj) {
- float result = 0;
- int activeElements = obj.getNumberOfActiveElements();
- int maxElements = obj.getElements().size();
-
- //result = (float) Math.pow((maxElements -activeElements),2)*10;
- result = (float) Math.pow(5, 4* ( (float) maxElements - (float) activeElements)/ (float) maxElements) - 1;
- //System.out.console.println("max: " + maxElements + " active: " + activeElements + " results in penalty: " + result);
- return result;
-
- }
- /**
- * Untouched:
- * Calculates a penalty value based on the HOs current supply percentage
- * @param supplyPercentage
- * @return
- */
- private static double holonObjectSupplyPenaltyFunction(float supplyPercentage) {
- double result = 0;
- /*if(supplyPercentage == 1)
- return result;
- else if(supplyPercentage < 1 && supplyPercentage >= 0.25) // undersupplied inbetween 25% and 100%
- result = (float) Math.pow(1/supplyPercentage, 2);
- else if (supplyPercentage < 0.25) //undersupplied with less than 25%
- result = (float) Math.pow(1/supplyPercentage,2);
- else if (supplyPercentage < 1.25) //Oversupplied less than 25%
- result = (float) Math.pow(supplyPercentage,3) ;
- else result = (float) Math.pow(supplyPercentage,4); //Oversupplied more than 25%
-
-
- if(Float.isInfinite(result) || Float.isNaN(result))
- result = 1000;
- */
- if(supplyPercentage <= 1.0) {
- result = Math.pow(5,((100 - (supplyPercentage*100))/50 + 2)) - Math.pow(5, 2);
- }
- else {
- result = Math.pow(6,((100 - (supplyPercentage*100))/50 + 2)) - Math.pow(6, 2);
- }
-
- return result;
- }
- /**
- * If you want to get in touch with a reliable state? Working function not in use currently.
- * @param state
- * @return
- */
- private static double StateToDouble(HolonObjectState state) {
- switch (state) {
- case NOT_SUPPLIED:
- return 150.0;
- case NO_ENERGY:
- return 150.0;
- case OVER_SUPPLIED:
- return 100.0;
- case PARTIALLY_SUPPLIED:
- return 100.0;
- case PRODUCER:
- return 0;
- case SUPPLIED:
- return 0;
- default:
- return 0;
- }
- }
-
- /**
- * Method to get the current Position alias a ListOf Booleans for aktive settings on the Objects on the Canvas.
- * Also initialize the Access Hashmap to swap faster positions.
- * @param model
- * @return
- */
- private List<Boolean> extractPositionAndAccess(Model model) {
- List<Boolean> initialState = new ArrayList<Boolean>();
- access= new HashMap<Integer, AccessWrapper>();
- rollOutNodes((useGroupNode && (dGroupNode != null))? dGroupNode.getModel().getNodes() :model.getObjectsOnCanvas(), initialState, model.getCurIteration());
- resetChain.add(initialState);
- return initialState;
- }
- /**
- * Method to extract the Informations recursively out of the Model.
- * @param nodes
- * @param positionToInit
- * @param timeStep
- */
- private void rollOutNodes(List<AbstractCpsObject> nodes, List<Boolean> positionToInit, int timeStep) {
- for(AbstractCpsObject aCps : nodes) {
- if (aCps instanceof HolonObject) {
- for (HolonElement hE : ((HolonObject) aCps).getElements()) {
- positionToInit.add(hE.isActive());
- access.put(positionToInit.size() - 1 , new AccessWrapper(hE));
- }
- }
- else if (aCps instanceof HolonSwitch) {
- HolonSwitch sw = (HolonSwitch) aCps;
- positionToInit.add(sw.getState(timeStep));
- access.put(positionToInit.size() - 1 , new AccessWrapper(sw));
- }
- else if(aCps instanceof CpsUpperNode) {
- rollOutNodes(((CpsUpperNode)aCps).getNodes(), positionToInit ,timeStep );
- }
- }
- }
- /**
- * To let the User See the current state without touching the Canvas.
- */
- private void updateVisual() {
- control.calculateStateAndVisualForCurrentTimeStep();
- control.updateCanvas();
- }
- /**
- * Sets the Model back to its original State before the LAST run.
- */
- private void resetState() {
- setState(resetChain.getLast());
- }
-
- /**
- * Sets the State out of the given position for calculation or to show the user.
- * @param position
- */
- private void setState(List<Boolean> position) {
- for(int i = 0;i<position.size();i++) {
- access.get(i).setState(position.get(i));
- }
- }
-
- /**
- * A Database for all Global Best(G<sub>Best</sub>) Values in a execution of a the Algo. For Easy Printing.
- */
- public class RunDataBase {
- List<List<Double>> allRuns = new ArrayList<List<Double>>();
-
-
- /**
- * Initialize The Stream before you can write to a File.
- */
- public void initFileStream() {
- File file = fileChooser.getSelectedFile();
- try {
- file.createNewFile();
- BufferedWriter out = new BufferedWriter(new OutputStreamWriter(
- new FileOutputStream(file, append), "UTF-8"));
- printToStream(out);
- out.close();
- } catch (IOException e) {
- console.println(e.getMessage());
- }
- }
-
- /**
- *
- * TODO: Rolf Change this method to suit your Python script respectively.
- * A run have maxIterations + 2 values. As described: First is the InitialState Value,
- * Second is The best Value after the swarm is Initialized not have moved jet, and then comes the Iterations that described
- * each step of movement from the swarm.
- */
- public void printToStream(BufferedWriter out) throws IOException {
- try {
- out.write(maxIterations + 2 + "," + allRuns.size() + "," + swarmSize);
- out.newLine();
- }
- catch(IOException e) {
- console.println(e.getMessage());
- }
- allRuns.forEach(run -> {
- try {
- out.write( run.stream().map(Object::toString).collect(Collectors.joining(", ")));
- out.newLine();
- } catch (IOException e) {
- console.println(e.getMessage());
- }
- } );
- }
-
- public List<Double> insertNewRun(){
- List<Double> newRun = new ArrayList<Double>();
- allRuns.add(newRun);
- return newRun;
- }
- }
-
-
- /**
- * To give the Local Best of a Partice(P<sub>Best</sub>) or the Global Best(G<sub>Best</sub>) a Wrapper to have Position And Evaluation Value in one Place.
- */
- private class Best{
- public double value;
- public List<Boolean> position;
- public Best(){
- }
- }
- /**
- * A Wrapper Class for Access HolonElement and HolonSwitch in one Element and not have to split the List.
- */
- private class AccessWrapper {
- public static final int HOLONELEMENT = 0;
- public static final int SWITCH = 1;
- private int type;
- private HolonSwitch hSwitch;
- private HolonElement hElement;
- public AccessWrapper(HolonSwitch hSwitch){
- type = SWITCH;
- this.hSwitch = hSwitch;
- }
- public AccessWrapper(HolonElement hElement){
- type = HOLONELEMENT;
- this.hElement = hElement;
- }
- public void setState(boolean state) {
- if(type == HOLONELEMENT) {
- hElement.setActive(state);
- }else{//is switch
- hSwitch.setManualMode(true);
- hSwitch.setManualState(state);
- }
-
- }
- public boolean getState(int timeStep) {
- return (type == HOLONELEMENT)?hElement.isActive():hSwitch.getState(timeStep);
- }
- }
- /**
- * Class to represent a Particle.
- */
- private class Particle{
- /**
- * The velocity of a particle.
- */
- public List<Double> velocity;
- /**
- * The positions genotype.
- */
- public List<Double> xGenotype;
- /**
- * The positions phenotype. Alias the current position.
- */
- public List<Boolean> xPhenotype;
-
- public Best localBest;
-
- Particle(List<Boolean> position){
- this.xPhenotype = position;
- //Init velocity, xGenotype with 0.0 values.
- this.velocity = position.stream().map(bool -> 0.0).collect(Collectors.toList());
- this.xGenotype = position.stream().map(bool -> 0.0).collect(Collectors.toList());
- localBest = new Best();
- localBest.value = Double.MAX_VALUE;
- }
- public void checkNewEvaluationValue(double newEvaluationValue) {
- if(newEvaluationValue < localBest.value) {
- localBest.value = newEvaluationValue;
- localBest.position = xPhenotype.stream().map(bool -> bool).collect(Collectors.toList());
- }
- }
- public String toString() {
- return "Particle with xPhenotype(Position), xGenotype, velocity:["
- + listToString(xPhenotype) + "],[" + listToString(xGenotype) + "],["
- + listToString(velocity) + "]";
- }
- private <Type> String listToString(List<Type> list) {
- return list.stream().map(Object::toString).collect(Collectors.joining(", "));
- }
-
- }
-
- /**
- * To create Random and maybe switch the random generation in the future.
- */
- private static class Random{
-
-
- private static java.util.Random random = new java.util.Random();
-
- /**
- * True or false
- * @return the random boolean.
- */
- public static boolean nextBoolean(){
- return random.nextBoolean();
- }
- /**
- * Between 0.0(inclusive) and 1.0 (exclusive)
- * @return the random double.
- */
- public static double nextDouble() {
- return random.nextDouble();
- }
-
- /**
- * Random Int in Range [min;max[ with UniformDistirbution
- * @param min
- * @param max
- * @return
- */
- public static int nextIntegerInRange(int min, int max) {
- return min + random.nextInt(max - min);
- }
- }
-
-
- private class Handle<T>{
- public T object;
- Handle(T object){
- this.object = object;
- }
- public String toString() {
- return object.toString();
- }
- }
-
- }
|