package ui.controller; import classes.*; import classes.comparator.EnergyMinToMaxComparator; import classes.comparator.MinEnergyComparator; import classes.comparator.TotalEnergyComparator; import ui.model.Model; import ui.view.FlexiblePane; import ui.view.MyCanvas; import java.util.ArrayList; import java.util.HashMap; /** * Controller for Simulation. * * @author Gruppe14 */ public class SimulationManager { int global = 0; private Model model; private ArrayList objectsToHandle; // private ArrayList allConnections; private ArrayList subNets; private ArrayList brokenEdges; private MyCanvas canvas; private int timeStep; private HashMap tagTable = new HashMap<>(); private FlexiblePane flexPane; private HashMap flexDevicesTurnedOnThisTurn = new HashMap<>(); /** * Constructor. * * @param m Model */ SimulationManager(Model m) { canvas = null; model = m; subNets = new ArrayList<>(); brokenEdges = new ArrayList<>(); } /** * calculates the flow of the edges and the supply for objects. * * @param x current Iteration */ void calculateStateForTimeStep(int x) { reset(); timeStep = x; searchForSubNets(); for (SubNet singleSubNet : subNets) { resetConnections(singleSubNet.getObjects().get(0), new ArrayList<>(), new ArrayList<>()); } for (SubNet singleSubNet : subNets) { float production = calculateEnergyWithoutFlexDevices("prod", singleSubNet, timeStep); float consumption = calculateEnergyWithoutFlexDevices("cons", singleSubNet, timeStep); // surplus of energy is computed by sum, since consumption is a negative value float energySurplus = production + consumption; float minConsumption = calculateMinimumEnergy(singleSubNet, timeStep); // --------------- use flexible devices --------------- if (energySurplus != 0 && model.useFlexibleDevices()) { turnOnFlexibleDevices(singleSubNet, energySurplus, x); // if (!flexDevicesTurnedOnThisTurn.isEmpty()) { // System.out.println("The following devices were turned on in this turn: "); // System.out.println(flexDevicesTurnedOnThisTurn.toString()); // } // recompute after having examined/turned on all flexible devices production = calculateEnergyWithFlexDevices("prod", singleSubNet, timeStep); consumption = calculateEnergyWithFlexDevices("cons", singleSubNet, timeStep); energySurplus = production + consumption; } // --------------- set flow simulation --------------- setFlowSimulation(singleSubNet); // --------------- visualise graph --------------- /** * production of subnets, that might be partially turned on/off */ float currentProduction = production; /** * HolonObjects that can be partially Supplied but might be fully Supplied */ ArrayList partiallySuppliedList = new ArrayList(); /** * supply Buildings with minimal Energy first, if conflicts happen */ singleSubNet.getObjects().sort(new MinEnergyComparator(x)); for (HolonObject hl : singleSubNet.getObjects()) { if (hl.getState() != HolonObject.NO_ENERGY && hl.getState() != HolonObject.PRODUCER) { for (int i = 0; i < hl.getConnections().size(); i++) { CpsEdge edge = hl.getConnectedTo().get(i); if (edge.isWorking() && edge.getFlow() > 0 || edge.getCapacity() == CpsEdge.CAPACITY_INFINITE) { if ((production + consumption) >= 0) { if (energySurplus > 0) { hl.setState(HolonObject.OVER_SUPPLIED); } else { hl.setState(HolonObject.SUPPLIED); } } else { if ((production + minConsumption) >= 0) { hl.setState(HolonObject.PARTIALLY_SUPPLIED); } else if (hl.checkIfPartiallySupplied(timeStep)) { hl.setState(HolonObject.PARTIALLY_SUPPLIED); } else { /** * Case that only some HolonObjects can be supplied */ if(-hl.getCurrentEnergyAtTimeStep(x)<=currentProduction){ hl.setState(HolonObject.PARTIALLY_SUPPLIED); currentProduction += hl.getMinEnergy(x); partiallySuppliedList.add(hl); }else if(-hl.getMinEnergy(x)<=currentProduction){ hl.setState(HolonObject.PARTIALLY_SUPPLIED); currentProduction += hl.getMinEnergy(x); partiallySuppliedList.add(hl); }else{ hl.setState(HolonObject.NOT_SUPPLIED); //currentProduction += hl.getCurrentEnergyAtTimeStep(x); } } } break; } } /** * check if some object cn self supply itself */ if (hl.checkIfPartiallySupplied(timeStep) && hl.getState() != HolonObject.SUPPLIED && hl.getState() != HolonObject.OVER_SUPPLIED) { hl.setState(HolonObject.PARTIALLY_SUPPLIED); } } } /** * check if some partially supplied building might be fully supplied. */ partiallySuppliedList.sort(new EnergyMinToMaxComparator(x)); for(HolonObject part: partiallySuppliedList){ currentProduction -= part.getMinEnergy(x); /* * if possible, supply fully */ if(-part.getCurrentEnergyAtTimeStep(x)<=currentProduction){ part.setState(HolonObject.SUPPLIED); currentProduction += part.getCurrentEnergyAtTimeStep(x); }else{ currentProduction += part.getMinEnergy(x); } } } canvas.repaint(); flexPane.recalculate(); } /** * search for all flexible devices in the network and turn them on, until energy surplus = 0 * or all devices have been examined. * * This code could be compressed (cases inside over- and underproduction are the same), but we decided that it * is better readable this way * * @param subNet the subnet * @param energySurplus the current surplus of energy */ private void turnOnFlexibleDevices(SubNet subNet, float energySurplus, int timestep) { for (HolonObject holonOb : subNet.getObjects()) { for (HolonElement holonEl : holonOb.getElements()) { // if this element is flexible and active (can be considered for calculations) if (holonEl.isFlexible() && holonEl.isActive()) { float energyAvailableSingle = holonEl.getAvailableEnergyAt(timestep); float energyAvailableMultiple = energyAvailableSingle * holonEl.getAmount(); // ------------- flexible consumer / OVERPRODUCTION ------------- if (energyAvailableMultiple < 0 && energySurplus > 0) { // if there is more wasted energy than energy that this device can give, give all energy available if (Math.abs(energyAvailableMultiple) <= Math.abs(energySurplus)) { energySurplus += energyAvailableMultiple; // set the new energy consumption to the maximum holonEl.setEnergyPerElement(energyAvailableSingle); flexDevicesTurnedOnThisTurn.put(holonEl, energyAvailableMultiple); } // else: we just need to turn on part of the flexible energy available else { float energyNeeded = -energySurplus; energySurplus += energyNeeded; // should give 0, but was kept this was for consistency // the energy needed divided through the amount of elements holonEl.setEnergyPerElement(energyNeeded / holonEl.getAmount()); flexDevicesTurnedOnThisTurn.put(holonEl, energyNeeded); } } // ------------- flexible producer / UNDERPRODUCTION ------------- else if (energyAvailableMultiple > 0 && energySurplus < 0) { // if there is more energy needed than this device can give, give all the energy available if (Math.abs(energyAvailableMultiple) <= Math.abs(energySurplus)) { energySurplus += energyAvailableMultiple; // set the new energy consumption to the maximum holonEl.setEnergyPerElement(energyAvailableSingle); flexDevicesTurnedOnThisTurn.put(holonEl, energyAvailableMultiple); } // else: we just need to turn on part of the flexible energy available else { float energyNeeded = -energySurplus; int i = 0; energySurplus += energyNeeded; // should give 0, but was kept this was for consistency // the energy needed divided through the amount of elements holonEl.setEnergyPerElement(energyNeeded / holonEl.getAmount()); flexDevicesTurnedOnThisTurn.put(holonEl, energyNeeded); } } } if (energySurplus == 0) { break; } } if (energySurplus == 0) { break; } } } /** * Set Flow Simulation. * * @param sN Subnet */ private void setFlowSimulation(SubNet sN) { ArrayList producers = new ArrayList<>(); AbstractCpsObject tmp = null; tagTable = new HashMap<>(); // traverse all objects in this subnet for (HolonObject hl : sN.getObjects()) { float energy = hl.getCurrentEnergyAtTimeStep(timeStep); // if their production is higher than their consumption if (energy > 0) { tagTable.put(hl.getId(), energy); hl.addTag(hl.getId()); for (CpsEdge edge : hl.getConnections()) { if (edge.isWorking()) { // set other end of edge as tmp-object // and add this end to the other end's tag-list AbstractCpsObject a = edge.getA(); AbstractCpsObject b = edge.getB(); if (a.getId() == hl.getId()) { b.addTag(hl.getId()); tmp = b; } if (b.getId() == hl.getId()) { a.addTag(hl.getId()); tmp = a; } edge.setFlow(edge.getFlow() + energy); edge.calculateState(); edge.addTag(hl.getId()); if (edge.isWorking() && !producers.contains(tmp)) { if (tmp instanceof HolonSwitch) { if (((HolonSwitch) tmp).getState(timeStep)) { producers.add(tmp); } } else if (!(tmp instanceof CpsUpperNode)) { producers.add(tmp); } } } } } } setFlowSimRec(producers, 0); } /** * Set Flow Simulation Rec. * * @param nodes the nodes * @param iter the Iteration */ private void setFlowSimRec(ArrayList nodes, int iter) { ArrayList newNodes = new ArrayList<>(); ArrayList changedEdges = new ArrayList<>(); AbstractCpsObject tmp; if (nodes.size() != 0) { for (AbstractCpsObject cps : nodes) { // check whether the cps is in a legit state if it is a switch if (legitState(cps)) { for (CpsEdge edge : cps.getConnections()) { // is edge working // and does the edge's tag-list not (yet) contain all tags of the cps if (edge.isWorking() && (!(edge.containsTags(edge.getTags(), cps.getTag())))) { if (edge.getA().getId() == cps.getId()) { tmp = edge.getB(); } else { tmp = edge.getA(); } for (Integer tag : cps.getTag()) { if (!(edge.getTags().contains(tag)) && !(edge.getPseudoTags().contains(tag))) { edge.setFlow(edge.getFlow() + tagTable.get(tag)); edge.addTag(tag); } } // uppernodes do not spread energy if (!(tmp instanceof CpsUpperNode)) { for (Integer tag : tmp.getTag()) { if (!(edge.getTags().contains(tag)) && tagTable.get(tag) != null && !(edge.getPseudoTags().contains(tag))) { edge.setFlow(edge.getFlow() + tagTable.get(tag)); edge.addPseudoTag(tag); changedEdges.add(edge); } } } edge.calculateState(); if (edge.isWorking() && !(tmp instanceof CpsUpperNode)) { tmp.addAllPseudoTags(cps.getTag()); if (!newNodes.contains(tmp)) { newNodes.add(tmp); } } } } } } setPseudoTags(newNodes, changedEdges); setFlowSimRec(newNodes, iter + 1); } } /** * Set the Pseudo Tags. * * @param nodes Array of AbstractCpsObjects */ private void setPseudoTags(ArrayList nodes, ArrayList edges) { for (AbstractCpsObject node : nodes) { node.recalculateTags(); node.setPseudoTags(new ArrayList<>()); } for (CpsEdge edge : edges) { edge.recalculateTags(); edge.setPseudoTag(new ArrayList<>()); } } /** * Reset the Connection. * * @param cps CpsObject * @param visitedObj the visited Objects * @param visitedEdges the visited Edges */ private void resetConnections(AbstractCpsObject cps, ArrayList visitedObj, ArrayList visitedEdges) { visitedObj.add(cps.getId()); cps.resetTags(); for (CpsEdge e : cps.getConnections()) { if (!(visitedEdges.contains(e))) { e.setFlow(0); e.calculateState(); e.setTags(new ArrayList<>()); visitedEdges.add(e); if (!(visitedObj.contains(e.getA().getId()))) { resetConnections(e.getA(), visitedObj, visitedEdges); e.getA().resetTags(); } if (!(visitedObj.contains(e.getB().getId()))) { resetConnections(e.getB(), visitedObj, visitedEdges); e.getB().resetTags(); } } } } /** * calculates the energy of either all producers or consumers. * Flexible devices are filtered out * * @param type Type * @param sN Subnet * @param x Integer * @return The Energy */ private float calculateEnergyWithoutFlexDevices(String type, SubNet sN, int x) { float energy = 0; for (HolonObject hl : sN.getObjects()) { float currentEnergyWithoutFlexibles = hl.getCurrentEnergyAtTimeStepWithoutFlexiblesAndResetFlexibles(x); if (type.equals("prod")) { if (currentEnergyWithoutFlexibles > 0) { energy += currentEnergyWithoutFlexibles; hl.setState(HolonObject.PRODUCER); } } if (type.equals("cons")) { if (currentEnergyWithoutFlexibles < 0) { energy = energy + currentEnergyWithoutFlexibles; hl.setState(HolonObject.NOT_SUPPLIED); } } if (currentEnergyWithoutFlexibles == 0) { hl.setState(HolonObject.NO_ENERGY); } } return energy; } /** * calculates the energy of either all producers or consumers. * Flexible devices are filtered out * * @param type Type * @param sN Subnet * @param x Integer * @return The Energy */ private float calculateEnergyWithFlexDevices(String type, SubNet sN, int x) { float energy = 0; for (HolonObject hl : sN.getObjects()) { float currentEnergy = hl.getCurrentEnergyAtTimeStep(x); if (type.equals("prod")) { if (currentEnergy > 0) { energy += currentEnergy; hl.setState(HolonObject.PRODUCER); } } if (type.equals("cons")) { if (currentEnergy < 0) { energy = energy + currentEnergy; hl.setState(HolonObject.NOT_SUPPLIED); } } if (currentEnergy == 0) { hl.setState(HolonObject.NO_ENERGY); } } return energy; } /** * Calculate the Minimum Energy. * * @param sN Subnet * @param x Integer * @return the Calculated minimum Energy */ private float calculateMinimumEnergy(SubNet sN, int x) { float min = 0; float minElement = 0; for (HolonObject hl : sN.getObjects()) { if (hl.getElements().size() > 0 && hl.getElements().get(0).getOverallEnergyAtTimeStep(x) < 0) { minElement = hl.getElements().get(0).getOverallEnergyAtTimeStep(x); } for (HolonElement he : hl.getElements()) { float overallEnergy = he.getOverallEnergyAtTimeStep(x); if (minElement < overallEnergy && overallEnergy < 0) { minElement = overallEnergy; } } min = min + minElement; } return min; } /** * generates all subNets from all objectsToHandle. */ private void searchForSubNets() { subNets = new ArrayList<>(); brokenEdges.clear(); boolean end = false; int i = 0; AbstractCpsObject cps; if (objectsToHandle.size() > 0) { while (!end) { cps = objectsToHandle.get(i); SubNet singleSubNet = new SubNet(new ArrayList<>(), new ArrayList<>(), new ArrayList<>()); singleSubNet = buildSubNet(cps, new ArrayList<>(), singleSubNet); if (singleSubNet.getObjects().size() != 0) { subNets.add(singleSubNet); } if (0 == objectsToHandle.size()) { end = true; } } } } /** * recursivly generates a subnet of all objects, that one specific object is * connected to. * * @param cps AbstractCpsObject * @param visited visited Array of Integer * @param sN Subnets * @return Subnet */ private SubNet buildSubNet(AbstractCpsObject cps, ArrayList visited, SubNet sN) { visited.add(cps.getId()); if (cps instanceof HolonObject) { sN.getObjects().add((HolonObject) cps); } if (cps instanceof HolonSwitch) { sN.getSwitches().add((HolonSwitch) cps); } removeFromToHandle(cps.getId()); AbstractCpsObject a; AbstractCpsObject b; for (CpsEdge edge : cps.getConnections()) { if (edge.isWorking()) { a = edge.getA(); b = edge.getB(); if (!(cps instanceof HolonSwitch)) { if (!(sN.getEdges().contains(edge))) { sN.getEdges().add(edge); } } if (cps instanceof HolonSwitch && ((HolonSwitch) cps).getState(timeStep)) { if (!(sN.getEdges().contains(edge))) { sN.getEdges().add(edge); } } if (!visited.contains(a.getId()) && legitState(cps) && !(a instanceof CpsUpperNode)) { sN = buildSubNet(a, visited, sN); } if (!visited.contains(b.getId()) && legitState(cps) && !(b instanceof CpsUpperNode)) { sN = buildSubNet(b, visited, sN); } if (a instanceof CpsUpperNode && a.getId() != cps.getId()) { edge.setConnected(CpsEdge.CON_UPPER_NODE_NOT_INSIDE); checkForConnectedStates(b, (CpsUpperNode) a, edge); } if (b instanceof CpsUpperNode && b.getId() != cps.getId()) { edge.setConnected(CpsEdge.CON_UPPER_NODE_NOT_INSIDE); checkForConnectedStates(a, (CpsUpperNode) b, edge); } } else { brokenEdges.add(edge); } } return sN; } /** * is the Switch in a legitimate State. * * @param current AbstractCpsObject * @return boolean */ private boolean legitState(AbstractCpsObject current) { return !(current instanceof HolonSwitch) || ((HolonSwitch) current).getState(timeStep); } // /** // * ensures that objectsToHandle only contains HolonObjects. // */ // public void cleanObjectsToHandle() { // for (int i = 0; i < objectsToHandle.size(); i++) { // if (!(objectsToHandle.get(i) instanceof HolonObject)) { // objectsToHandle.remove(i); // } // } // } /** * removes an Object that already has been handled. * * @param id the Object ID */ private void removeFromToHandle(int id) { for (int i = 0; i < objectsToHandle.size(); i++) { if (objectsToHandle.get(i).getId() == id) { objectsToHandle.remove(i); } } } /** * copies the data of an array of Objects. * * @param toCopy the ArrayList of CpsObjects co Copy */ private void copyObjects(ArrayList toCopy) { for (AbstractCpsObject cps : toCopy) { if (cps instanceof CpsUpperNode) { copyObjects(((CpsUpperNode) cps).getNodes()); } else { objectsToHandle.add(cps); } } } /** * Prints the Components auf all subnets. */ private void printNetsToConsole() { for (int i = 0; i < subNets.size(); i++) { SubNet subNet = subNets.get(i); System.out.println("SUBNET NR:" + i); subNet.toString(timeStep); } } /** * Set the Canvas. * * @param can the Canvas */ public void setCanvas(MyCanvas can) { canvas = can; } /** * Reset all Data to the current state of the Model. */ public void reset() { objectsToHandle = new ArrayList<>(); copyObjects(model.getObjectsOnCanvas()); flexDevicesTurnedOnThisTurn = new HashMap<>(); } /** * Resets the State of all Edges */ private void resetEdges() { for (CpsEdge e : brokenEdges) { e.setWorkingState(true); } } /** * Resets the State for the whole Simulation Model */ void resetSimulation() { reset(); resetEdges(); } /** * Get all Subnets. * * @return all Subnets */ public ArrayList getSubNets() { return subNets; } /** * Get broken Edges */ // public ArrayList getBrokenEdges() { // return brokenEdges; // } /** * checks whether a given object is connected to an object inside the upperNode. * if yes, the state for the edge is changed in "connected" or "not connected" */ private void checkForConnectedStates(AbstractCpsObject cps, CpsUpperNode cUNode, CpsEdge theEdge) { AbstractCpsObject tmp; for (CpsEdge edge : cps.getConnections()) { if (edge.getA().getId() == cps.getId()) { tmp = edge.getB(); } else { tmp = edge.getA(); } if (cUNode.getNodes().contains(tmp)) { if (tmp instanceof CpsUpperNode) { checkForConnectedStates(cps, (CpsUpperNode) tmp, theEdge); } else { theEdge.setConnected(CpsEdge.CON_UPPER_NODE_AND_INSIDE); break; } } } } public FlexiblePane getFlexiblePane() { return flexPane; } void setFlexiblePane(FlexiblePane fp) { flexPane = fp; } }