package ui.controller; import classes.*; import classes.comparator.EnergyMinToMaxComparator; import classes.comparator.MinEnergyComparator; import classes.comparator.WeakestBattery; import ui.model.CableWithState; import ui.model.DecoratedCable; import ui.model.DecoratedCable.CableState; import ui.model.DecoratedNetwork; import ui.model.DecoratedState; import ui.model.DecoratedSwitch; import ui.model.MinimumModel; import ui.model.MinimumNetwork; import ui.model.Model; import ui.view.FlexiblePane; import ui.view.GUI; import ui.view.MyCanvas; import ui.view.Outliner; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import javax.swing.JPanel; /** * Controller for Simulation. * * @author Gruppe14 */ public class SimulationManager { int global = 0; private Model model; private ArrayList objectsToHandle; private ArrayList subNets; private ArrayList brokenEdges; private HashMap saves = new HashMap(); private MyCanvas canvas; private int timeStep; private HashMap tagTable = new HashMap<>(); private FlexiblePane flexPane; private GUI gui; private HashMap flexDevicesTurnedOnThisTurn = new HashMap<>(); /** * One Element of each HolonObject will be powered first, starting with the * smallest Demand. If ale HolonObjects have an active Element, the * simulation will try to fully supply as many HolonObjects as possible. */ public static final short fairnessMininumDemandFirst = 0; /** * All HolonObjects will receive the same amount of energy. */ public static final short fairnessAllEqual = 1; /** * Constructor. * * @param m * Model */ SimulationManager(Model m) { canvas = null; model = m; subNets = new ArrayList<>(); brokenEdges = new ArrayList<>(); } /** * calculates the flow of the edges and the supply for objects. * * @param timestep * current Iteration */ void calculateStateForTimeStep(int timestep) { boolean theStateBeforeExist= (timestep > 0 && saves.containsKey(timestep-1)); System.out.println("Calculate Timestep: " + timestep + (theStateBeforeExist ? " StateBeforeExist": "")); HashMap map = new HashMap(); if(theStateBeforeExist) { //make cable hastmap DecoratedState theStateBefore = saves.get(timestep-1); for(DecoratedCable edge : theStateBefore.getLeftOverEdges()) { map.put(edge.getModel(), edge.getState()); } } timeStep = timestep; ArrayList list = new ArrayList(); MinimumModel minimumModel = new MinimumModel(model.getObjectsOnCanvas(), model.getEdgesOnCanvas()); //set all working: for(CableWithState cable : minimumModel.getEdgeList()) { if(map.containsKey(cable.getModel())) cable.setState(map.get(cable.getModel())); } ArrayList leftOver = new ArrayList(); boolean doAnotherLoop = true; while(doAnotherLoop) { doAnotherLoop = false; list = CalculataModel.calculateNetworks(minimumModel, timestep, leftOver); for(MinimumNetwork net : list) { float energyOnCables = net.getHolonObjectList().stream().filter(object -> object.getEnergyAtTimeStep(timestep) > 0.0f).map(object -> object.getEnergyAtTimeStep(timestep)).reduce(0.0f, ((a,b) -> a + b)); //find the cable with the energy supplied from his two connected objects are the biggest, from all cables that the network give more energy than the cablecapacity. CableWithState cable = net.getEdgeList().stream().filter(aCable -> energyOnCables > aCable.getModel().getCapacity()).max((lhs,rhs) -> Float.compare(lhs.getEnergyFromConnetedAtTimestep(timestep), rhs.getEnergyFromConnetedAtTimestep(timestep))).orElse(null); if(cable != null) { cable.setState(CableState.Burned); doAnotherLoop = true; } } } ArrayList decorNetworks = new ArrayList(); for (MinimumNetwork net : list) { decorNetworks.add(new DecoratedNetwork(net, timestep)); } ArrayList leftOverDecoratedCables = new ArrayList(); for(CableWithState cable: leftOver) { leftOverDecoratedCables.add(new DecoratedCable(cable.getModel(), cable.getState(), 0.0f)); } ArrayList listOfDecoratedSwitches = CalculataModel.decorateSwitches(minimumModel, timestep); saves.put(timestep, new DecoratedState(decorNetworks, leftOverDecoratedCables, listOfDecoratedSwitches, minimumModel.getNodeList() , timestep)); canvas.repaint(); gui.updateOutliners(getActualDecorState());//saves.getOrDefault(timestep, null); // for (StackTraceElement ste : Thread.currentThread().getStackTrace()) { // System.out.println(ste); //// } // reset(); // timeStep = x; // searchForSubNets(); // for (SubNet singleSubNet : subNets) { // if(singleSubNet.getObjects().size() == 0) // { // resetConnections(singleSubNet.getBatteries().get(0), // new ArrayList<>(), new ArrayList<>()); // }else // { // resetConnections(singleSubNet.getObjects().get(0), // new ArrayList<>(), new ArrayList<>()); // } // // } // for (SubNet singleSubNet : subNets) { // float production = calculateEnergyWithoutFlexDevices("prod", // singleSubNet, timeStep); // float consumption = calculateEnergyWithoutFlexDevices("cons", // singleSubNet, timeStep); // // surplus of energy is computed by sum, since consumption is a // // negative value // float energySurplus = production + consumption; // // // //float minConsumption = calculateMinimumEnergy(singleSubNet, timeStep); // // // --------------- use flexible devices --------------- // if (energySurplus != 0 && model.useFlexibleDevices()) { // turnOnFlexibleDevices(singleSubNet, energySurplus, x); // // // if (!flexDevicesTurnedOnThisTurn.isEmpty()) { // // System.out.println("The following devices were turned on in this turn: "); // // System.out.println(flexDevicesTurnedOnThisTurn.toString()); // // } // // // recompute after having examined/turned on all flexible // // devices // production = calculateEnergyWithFlexDevices("prod", // singleSubNet, timeStep); // consumption = calculateEnergyWithFlexDevices("cons", // singleSubNet, timeStep); // energySurplus = production + consumption; // } // // // --------------- set flow simulation --------------- // setFlowSimulation(singleSubNet); // // // --------------- visualise graph --------------- // // /** // * production of subnets, that might be partially turned on/off // */ // float currentProduction = production; // /** // * HolonObjects that can be partially Supplied but might be fully // * Supplied // */ // /* // ArrayList partiallySuppliedList = new ArrayList(); // /** // * HolonObjects that can get the spare energy // */ //// //// ArrayList notSuppliedList = new ArrayList(); // /** // * Number of HolonObjects that need to be supplied // */ //// long numberOfConsumers = singleSubNet.getObjects().stream() //// .filter(hl -> (hl.getState() != HolonObject.NO_ENERGY //// && hl.getState() != HolonObject.PRODUCER && hl //// .getConnectedTo().stream() //// .filter(e -> (e.getFlow() > 0)).count() > 0)) //// .count(); // /** // * energy each HolonObject receives in AlleEqualModus // */ // // if(energySurplus >= 0) // { // //Supply all consumer // for(HolonObject hO : singleSubNet.getObjects()) // { // float neededEnergy = hO.getCurrentEnergyAtTimeStep(x); // if(neededEnergy < 0) // { // hO.setCurrentSupply(-neededEnergy); // currentProduction -= -neededEnergy; //Subtract the Energy from the Production // } // } // //Supply all Batterys with the left currentProduction // singleSubNet.getBatteries().sort(new WeakestBattery(x));//Sort all batteries by the Value of ther StateOfCharge/Capasity // for(HolonBattery hB : singleSubNet.getBatteries()) // { // float energyToCollect = hB.getInAtTimeStep(x-1); // if(currentProduction >= energyToCollect) // { // //change StateofCharge soc = soc + energyToCollect // hB.setStateOfChargeAtTimeStep(hB.getStateOfChargeAtTimeStep(x-1) + energyToCollect, x); // currentProduction -= energyToCollect; // }else // { // //change StateofCharge soc = soc + currentProduction // hB.setStateOfChargeAtTimeStep(hB.getStateOfChargeAtTimeStep(x-1) + currentProduction, x); // currentProduction = 0; // //no break must be calculatet for all break; //because no more energy // } // } // //Over_Supply all consumer equal // long nOConsumer = singleSubNet.getObjects().stream().filter(hl -> (hl.getCurrentEnergyAtTimeStep(x) < 0)).count(); // if(nOConsumer != 0) // { // //energy to seperated equal // float EnergyOverSupplyPerHolonObject = currentProduction / nOConsumer; // for(HolonObject hO : singleSubNet.getObjects()) // { // float neededEnergy = hO.getCurrentEnergyAtTimeStep(x); // if(neededEnergy < 0) // { // hO.setCurrentSupply(hO.getCurrentSupply() + EnergyOverSupplyPerHolonObject); // } // } // currentProduction = 0; // } // } // else // { // //Check all Battries what they can provide // if(energySurplus + GetOutAllBatteries(singleSubNet.getBatteries(), x) >= 0) // { // singleSubNet.getBatteries().sort(new WeakestBattery(x));//.reverse(); // Collections.reverse(singleSubNet.getBatteries()); //most supplyed first // //Get the NEEDED energy // for(HolonBattery hB : singleSubNet.getBatteries()) // { // float neededEnergyFromBattery = currentProduction + consumption; //Energy is negativ // float maxEnergyAvailable = hB.getOutAtTimeStep(x-1); //energy is positiv // if(maxEnergyAvailable >= -neededEnergyFromBattery) // { // //change StateofCharge soc = soc - -neededEnergyFromBattery // hB.setStateOfChargeAtTimeStep(hB.getStateOfChargeAtTimeStep(x-1) - -neededEnergyFromBattery, x); // currentProduction += -neededEnergyFromBattery; // //no break must be calculatet for all beabreak; //When a energy can supply the last needed energy break; // } // else // { // //change StateofCharge soc = soc - maxEnergyAvailable // hB.setStateOfChargeAtTimeStep(hB.getStateOfChargeAtTimeStep(x-1) - maxEnergyAvailable, x); // currentProduction += maxEnergyAvailable; // } // } // //Supply all consumer all ar in state Supplied no one is oversupplied because // // just the energy that is needed is gained from the batteries // for(HolonObject hO : singleSubNet.getObjects()) // { // float neededEnergy = hO.getCurrentEnergyAtTimeStep(x); // if(neededEnergy < 0) // { // hO.setCurrentSupply(-neededEnergy); // currentProduction -= -neededEnergy; //Subtract the Energy from the Production // } // } // } // else //Objects have to be partially supplied // { // //Get all Energy out of battries as possible // for(HolonBattery hB : singleSubNet.getBatteries()) // { // float maxEnergyAvailable = hB.getOutAtTimeStep(x-1); //energy is positiv // //change StateofCharge soc = soc - maxEnergyAvailable // hB.setStateOfChargeAtTimeStep(hB.getStateOfChargeAtTimeStep(x-1) - maxEnergyAvailable, x); // currentProduction += maxEnergyAvailable; // } // //Calc // singleSubNet.getObjects().stream().forEach(hl -> hl.setCurrentSupply(0)); // if(model.getFairnessModel() == fairnessAllEqual) // { // long nOConsumer = singleSubNet.getObjects().stream().filter(hl -> (hl.getCurrentEnergyAtTimeStep(x) < 0)).count(); // float energyPerHolonObject = 0; // if (nOConsumer != 0) // energyPerHolonObject = currentProduction / nOConsumer; // for(HolonObject hO : singleSubNet.getObjects()) // { // if(hO.getCurrentEnergyAtTimeStep(x) < 0) //Just Consumer need Energy // { // hO.setCurrentSupply(energyPerHolonObject); // currentProduction -= energyPerHolonObject; //Subtract the Energy from the Production // } // } // } // else //(model.getFairnessModel() == fairnessMininumDemandFirst) // { // singleSubNet.getObjects().sort(new MinEnergyComparator(x)); // //SupplyAllMinimumEnergy // for(HolonObject hO : singleSubNet.getObjects()) // { // if(hO.checkIfPartiallySupplied(x))continue; // if(hO.getCurrentEnergyAtTimeStep(x) > 0)continue; // float minEnergy = -hO.getMinEnergy(x); //Energy from getMinEnergy is negative -> convert to positive // if(minEnergy <= currentProduction) // { // hO.setCurrentSupply(minEnergy); // currentProduction -= minEnergy; // }else // { // hO.setCurrentSupply(currentProduction); // currentProduction = 0; // break; // } // } // singleSubNet.getObjects().sort(new EnergyMinToMaxComparator(x)); // //supplyFullytillEnd ... because its cant be fully supplied // for(HolonObject hO : singleSubNet.getObjects()) // { // // float actualSupplyEnergy = hO.getCurrentSupply(); // float neededEnergy = -hO.getCurrentEnergyAtTimeStep(x) - actualSupplyEnergy; // if(neededEnergy <= 0)continue; //Producer or No EnergyNeeded // if(neededEnergy <= currentProduction) // { // hO.setCurrentSupply(neededEnergy+actualSupplyEnergy); // currentProduction -= neededEnergy; // }else // { // hO.setCurrentSupply(currentProduction+actualSupplyEnergy); // currentProduction = 0; // break; // } // } // // // } // } // // } // //Visualize the Color // for(HolonObject hO : singleSubNet.getObjects()) // { // float neededEnergy = -hO.getCurrentEnergyAtTimeStep(x); // convert negative energy in positive for calculations // if(neededEnergy < 0) // { // hO.setState(HolonObject.PRODUCER); // } // else if(neededEnergy > 0) // { // float currentSupply = hO.getCurrentSupply() ; // if(currentSupply > neededEnergy) // { // hO.setState(HolonObject.OVER_SUPPLIED); // }else if (currentSupply == neededEnergy) // { // hO.setState(HolonObject.SUPPLIED); // }else if (currentSupply < neededEnergy) // { // float minEnergy = -hO.getMinEnergy(x); // if(currentSupply >= minEnergy || hO.getSelfMadeEnergy(x) >= minEnergy ) // { // hO.setState(HolonObject.PARTIALLY_SUPPLIED); // }else // { // hO.setState(HolonObject.NOT_SUPPLIED); // } // } // } // else if(neededEnergy == 0) // { // hO.setState(HolonObject.NO_ENERGY); // } // } // } // canvas.repaint(); // flexPane.recalculate(); } /** * add all battries.getOut() from a list of battries and return them * @param aL a List of HolonBattries likely from subnet.getBatteries() * @param x TimeStep * @return * */ private float GetOutAllBatteries(ArrayList aL, int x) { float OutEnergy = 0; for(HolonBattery hB : aL) { //System.out.println("Iteration: "+ x +"OutBattery: "+ hB.getOutAtTimeStep(x-1)); OutEnergy += hB.getOutAtTimeStep(x-1); } //System.out.println("Iteration: "+ x +"GetOutAllBatteries: "+ OutEnergy); return OutEnergy; } /** * search for all flexible devices in the network and turn them on, until * energy surplus = 0 or all devices have been examined. * * This code could be compressed (cases inside over- and underproduction are * the same), but we decided that it is better readable this way * * @param subNet * the subnet * @param energySurplus * the current surplus of energy */ private void turnOnFlexibleDevices(SubNet subNet, float energySurplus, int timestep) { for (HolonObject holonOb : subNet.getObjects()) { for (HolonElement holonEl : holonOb.getElements()) { // if this element is flexible and active (can be considered for // calculations) if (holonEl.isFlexible() && holonEl.isActive()) { float energyAvailableSingle = holonEl .getEnergyAtTimeStep(timestep); float energyAvailableMultiple = energyAvailableSingle * holonEl.getAmount(); // ------------- flexible consumer / OVERPRODUCTION // ------------- if (energyAvailableMultiple < 0 && energySurplus > 0) { // if there is more wasted energy than energy that this // device can give, give all energy available if (Math.abs(energyAvailableMultiple) <= Math .abs(energySurplus)) { energySurplus += energyAvailableMultiple; // set the new energy consumption to the maximum holonEl.setEnergyPerElement(energyAvailableSingle); flexDevicesTurnedOnThisTurn.put(holonEl, energyAvailableMultiple); } // else: we just need to turn on part of the flexible // energy available else { float energyNeeded = -energySurplus; energySurplus += energyNeeded; // should give 0, but // was kept this was // for consistency // the energy needed divided through the amount of // elements holonEl.setEnergyPerElement(energyNeeded / holonEl.getAmount()); flexDevicesTurnedOnThisTurn.put(holonEl, energyNeeded); } } // ------------- flexible producer / UNDERPRODUCTION // ------------- else if (energyAvailableMultiple > 0 && energySurplus < 0) { // if there is more energy needed than this device can // give, give all the energy available if (Math.abs(energyAvailableMultiple) <= Math .abs(energySurplus)) { energySurplus += energyAvailableMultiple; // set the new energy consumption to the maximum holonEl.setEnergyPerElement(energyAvailableSingle); flexDevicesTurnedOnThisTurn.put(holonEl, energyAvailableMultiple); } // else: we just need to turn on part of the flexible // energy available else { float energyNeeded = -energySurplus; int i = 0; energySurplus += energyNeeded; // should give 0, but // was kept this was // for consistency // the energy needed divided through the amount of // elements holonEl.setEnergyPerElement(energyNeeded / holonEl.getAmount()); flexDevicesTurnedOnThisTurn.put(holonEl, energyNeeded); } } } if (energySurplus == 0) { break; } } if (energySurplus == 0) { break; } } } /** * Set Flow Simulation. * * @param sN * Subnet */ private void setFlowSimulation(SubNet sN) { ArrayList producers = new ArrayList<>(); AbstractCpsObject tmp = null; tagTable = new HashMap<>(); // traverse all objects in this subnet for (HolonObject hl : sN.getObjects()) { float energy = hl.getEnergyAtTimeStep(timeStep); // if their production is higher than their consumption if (energy > 0) { tagTable.put(hl.getId(), energy); hl.addTag(hl.getId()); for (CpsEdge edge : hl.getConnections()) { if (edge.isWorking()) { // set other end of edge as tmp-object // and add this end to the other end's tag-list AbstractCpsObject a = edge.getA(); AbstractCpsObject b = edge.getB(); if (a.getId() == hl.getId()) { b.addTag(hl.getId()); tmp = b; } if (b.getId() == hl.getId()) { a.addTag(hl.getId()); tmp = a; } edge.setFlow(edge.getFlow() + energy); edge.calculateState(); edge.addTag(hl.getId()); if (edge.isWorking() && !producers.contains(tmp)) { if (tmp instanceof HolonSwitch) { if (((HolonSwitch) tmp).getState(timeStep)) { producers.add(tmp); } } else if (!(tmp instanceof CpsUpperNode)) { producers.add(tmp); } } } } } } setFlowSimRec(producers, 0); } /** * Set Flow Simulation Rec. * * @param nodes * the nodes * @param iter * the Iteration */ private void setFlowSimRec(ArrayList nodes, int iter) { ArrayList newNodes = new ArrayList<>(); ArrayList changedEdges = new ArrayList<>(); AbstractCpsObject tmp; if (nodes.size() != 0) { for (AbstractCpsObject cps : nodes) { // check whether the cps is in a legit state if it is a switch if (legitState(cps)) { for (CpsEdge edge : cps.getConnections()) { // is edge working // and does the edge's tag-list not (yet) contain all // tags of the cps if (edge.isWorking() && (!(edge.containsTags(edge.getTags(), cps.getTag())))) { if (edge.getA().getId() == cps.getId()) { tmp = edge.getB(); } else { tmp = edge.getA(); } for (Integer tag : cps.getTag()) { if (!(edge.getTags().contains(tag)) && !(edge.getPseudoTags().contains(tag))) { edge.setFlow(edge.getFlow() + tagTable.get(tag)); edge.addTag(tag); } } // uppernodes do not spread energy if (!(tmp instanceof CpsUpperNode)) { for (Integer tag : tmp.getTag()) { if (!(edge.getTags().contains(tag)) && tagTable.get(tag) != null && !(edge.getPseudoTags() .contains(tag))) { edge.setFlow(edge.getFlow() + tagTable.get(tag)); edge.addPseudoTag(tag); changedEdges.add(edge); } } } edge.calculateState(); if (edge.isWorking() && !(tmp instanceof CpsUpperNode)) { tmp.addAllPseudoTags(cps.getTag()); if (!newNodes.contains(tmp)) { newNodes.add(tmp); } } } } } } setPseudoTags(newNodes, changedEdges); setFlowSimRec(newNodes, iter + 1); } } /** * Set the Pseudo Tags. * * @param nodes * Array of AbstractCpsObjects */ private void setPseudoTags(ArrayList nodes, ArrayList edges) { for (AbstractCpsObject node : nodes) { node.recalculateTags(); node.setPseudoTags(new ArrayList<>()); } for (CpsEdge edge : edges) { edge.recalculateTags(); edge.setPseudoTag(new ArrayList<>()); } } /** * Reset the Connection. * * @param cps * CpsObject * @param visitedObj * the visited Objects * @param visitedEdges * the visited Edges */ private void resetConnections(AbstractCpsObject cps, ArrayList visitedObj, ArrayList visitedEdges) { visitedObj.add(cps.getId()); cps.resetTags(); for (CpsEdge e : cps.getConnections()) { if (!(visitedEdges.contains(e))) { e.setFlow(0); e.calculateState(); e.setTags(new ArrayList<>()); visitedEdges.add(e); if (!(visitedObj.contains(e.getA().getId()))) { resetConnections(e.getA(), visitedObj, visitedEdges); e.getA().resetTags(); } if (!(visitedObj.contains(e.getB().getId()))) { resetConnections(e.getB(), visitedObj, visitedEdges); e.getB().resetTags(); } } } } /** * calculates the energy of either all producers or consumers. Flexible * devices are filtered out * * @param type * Type * @param sN * Subnet * @param x * Integer * @return The Energy */ private float calculateEnergyWithoutFlexDevices(String type, SubNet sN, int x) { float energy = 0; for (HolonObject hl : sN.getObjects()) { float currentEnergyWithoutFlexibles = hl .getCurrentEnergyAtTimeStepWithoutFlexiblesAndResetFlexibles(x); if (type.equals("prod")) { if (currentEnergyWithoutFlexibles > 0) { energy += currentEnergyWithoutFlexibles; hl.setState(HolonObject.PRODUCER); } } if (type.equals("cons")) { if (currentEnergyWithoutFlexibles < 0) { energy += currentEnergyWithoutFlexibles; hl.setState(HolonObject.NOT_SUPPLIED); } } if (currentEnergyWithoutFlexibles == 0) { hl.setState(HolonObject.NO_ENERGY); } } return energy; } /** * calculates the energy of either all producers or consumers. Flexible * devices are filtered out * * @param type * Type * @param sN * Subnet * @param x * Integer * @return The Energy */ private float calculateEnergyWithFlexDevices(String type, SubNet sN, int x) { float energy = 0; for (HolonObject hl : sN.getObjects()) { float currentEnergy = hl.getEnergyAtTimeStep(x); if (type.equals("prod")) { if (currentEnergy > 0) { energy += currentEnergy; hl.setState(HolonObject.PRODUCER); } } if (type.equals("cons")) { if (currentEnergy < 0) { energy = energy + currentEnergy; hl.setState(HolonObject.NOT_SUPPLIED); } } if (currentEnergy == 0) { hl.setState(HolonObject.NO_ENERGY); } } return energy; } /** * Calculate the Minimum Energy of a Subnet. * * @param sN * Subnet * @param x * Integer * @return the Calculated minimum Energy of a Subnet */ private float calculateMinimumEnergy(SubNet sN, int x) { float minimummConsumptionSubnet = 0; for (HolonObject hl : sN.getObjects()) { float minElement = 0; // Search for a activ element for (HolonElement he : hl.getElements()) { if (he.isActive()) { float overallEnergy = he.getOverallEnergyAtTimeStep(x); if (overallEnergy < 0) { // Is a consumer minElement = overallEnergy; } } } for (HolonElement he : hl.getElements()) { if (he.isActive()) { float overallEnergy = he.getOverallEnergyAtTimeStep(x); if (minElement < overallEnergy && overallEnergy < 0) { // is a smaller consumer minElement = overallEnergy; } } } minimummConsumptionSubnet += minElement; } System.out.println("MinimumEnergy = "+ minimummConsumptionSubnet); return minimummConsumptionSubnet; } /** * generates all subNets from all objectsToHandle. */ private void searchForSubNets() { subNets = new ArrayList<>(); brokenEdges.clear(); boolean end = false; int i = 0; AbstractCpsObject cps; if (objectsToHandle.size() > 0) { while (!end) { cps = objectsToHandle.get(i); SubNet singleSubNet = new SubNet(new ArrayList<>(), new ArrayList<>(), new ArrayList<>(), new ArrayList<>()); singleSubNet = buildSubNet(cps, new ArrayList<>(), singleSubNet); if (singleSubNet.getObjects().size() + singleSubNet.getBatteries().size() != 0 ) { subNets.add(singleSubNet); } if (0 == objectsToHandle.size()) { end = true; } } } } /** * recursivly generates a subnet of all objects, that one specific object is * connected to. * * @param cps * AbstractCpsObject * @param visited * visited Array of Integer * @param sN * Subnets * @return Subnet */ private SubNet buildSubNet(AbstractCpsObject cps, ArrayList visited, SubNet sN) { visited.add(cps.getId()); if (cps instanceof HolonObject) { sN.getObjects().add((HolonObject) cps); } if (cps instanceof HolonSwitch) { sN.getSwitches().add((HolonSwitch) cps); } if (cps instanceof HolonBattery) { sN.getBatteries().add((HolonBattery) cps); } removeFromToHandle(cps.getId()); AbstractCpsObject a; AbstractCpsObject b; for (CpsEdge edge : cps.getConnections()) { if (edge.isWorking()) { a = edge.getA(); b = edge.getB(); if (!(cps instanceof HolonSwitch)) { if (!(sN.getEdges().contains(edge))) { sN.getEdges().add(edge); } } if (cps instanceof HolonSwitch && ((HolonSwitch) cps).getState(timeStep)) { if (!(sN.getEdges().contains(edge))) { sN.getEdges().add(edge); } } if (!visited.contains(a.getId()) && legitState(cps) && !(a instanceof CpsUpperNode)) { sN = buildSubNet(a, visited, sN); } if (!visited.contains(b.getId()) && legitState(cps) && !(b instanceof CpsUpperNode)) { sN = buildSubNet(b, visited, sN); } if (a instanceof CpsUpperNode && a.getId() != cps.getId()) { edge.setConnected(CpsEdge.CON_UPPER_NODE_NOT_INSIDE); checkForConnectedStates(b, (CpsUpperNode) a, edge); } if (b instanceof CpsUpperNode && b.getId() != cps.getId()) { edge.setConnected(CpsEdge.CON_UPPER_NODE_NOT_INSIDE); checkForConnectedStates(a, (CpsUpperNode) b, edge); } } else { brokenEdges.add(edge); } } return sN; } /** * is the Switch in a legitimate State. * * @param current * AbstractCpsObject * @return boolean */ private boolean legitState(AbstractCpsObject current) { return !(current instanceof HolonSwitch) || ((HolonSwitch) current).getState(timeStep); } // /** // * ensures that objectsToHandle only contains HolonObjects. // */ // public void cleanObjectsToHandle() { // for (int i = 0; i < objectsToHandle.size(); i++) { // if (!(objectsToHandle.get(i) instanceof HolonObject)) { // objectsToHandle.remove(i); // } // } // } /** * removes an Object that already has been handled. * * @param id * the Object ID */ private void removeFromToHandle(int id) { for (int i = 0; i < objectsToHandle.size(); i++) { if (objectsToHandle.get(i).getId() == id) { objectsToHandle.remove(i); } } } /** * copies the data of an array of Objects. * * @param toCopy * the ArrayList of CpsObjects co Copy */ private void copyObjects(ArrayList toCopy) { for (AbstractCpsObject cps : toCopy) { if (cps instanceof CpsUpperNode) { copyObjects(((CpsUpperNode) cps).getNodes()); } else { objectsToHandle.add(cps); } } } /** * Prints the Components auf all subnets. */ private void printNetsToConsole() { for (int i = 0; i < subNets.size(); i++) { SubNet subNet = subNets.get(i); System.out.println("SUBNET NR:" + i); subNet.toString(timeStep); } } /** * Set the Canvas. * * @param can * the Canvas */ public void setCanvas(MyCanvas can) { canvas = can; } /** * Reset all Data to the current state of the Model. */ public void reset() { objectsToHandle = new ArrayList<>(); copyObjects(model.getObjectsOnCanvas()); flexDevicesTurnedOnThisTurn = new HashMap<>(); } /** * Resets the State of all Edges */ private void resetEdges() { for (CpsEdge e : brokenEdges) { e.setWorkingState(true); } } /** * Resets the State for the whole Simulation Model */ void resetSimulation() { reset(); resetEdges(); } /** * Get all Subnets. * * @return all Subnets */ public ArrayList getSubNets() { return subNets; } /** * Get broken Edges */ // public ArrayList getBrokenEdges() { // return brokenEdges; // } /** * checks whether a given object is connected to an object inside the * upperNode. if yes, the state for the edge is changed in "connected" or * "not connected" */ private void checkForConnectedStates(AbstractCpsObject cps, CpsUpperNode cUNode, CpsEdge theEdge) { AbstractCpsObject tmp; for (CpsEdge edge : cps.getConnections()) { if (edge.getA().getId() == cps.getId()) { tmp = edge.getB(); } else { tmp = edge.getA(); } if (cUNode.getNodes().contains(tmp)) { if (tmp instanceof CpsUpperNode) { checkForConnectedStates(cps, (CpsUpperNode) tmp, theEdge); } else { theEdge.setConnected(CpsEdge.CON_UPPER_NODE_AND_INSIDE); break; } } } } public FlexiblePane getFlexiblePane() { return flexPane; } void setFlexiblePane(FlexiblePane fp) { flexPane = fp; } public DecoratedState getActualDecorStateWithOffSet(int offSet) { return getDecorState(timeStep + offSet); } public DecoratedState getActualDecorState() { return getDecorState(timeStep); } public DecoratedState getDecorState(int timestep) { return saves.getOrDefault(timestep, null); } public void setGui(GUI gui) { this.gui = gui; } }