|
@@ -5,21 +5,23 @@ import java.awt.Component;
|
|
import java.awt.Dimension;
|
|
import java.awt.Dimension;
|
|
import java.awt.FlowLayout;
|
|
import java.awt.FlowLayout;
|
|
import java.awt.Font;
|
|
import java.awt.Font;
|
|
-import java.awt.GridBagConstraints;
|
|
|
|
-import java.awt.GridBagLayout;
|
|
|
|
|
|
+import java.io.BufferedWriter;
|
|
|
|
+import java.io.File;
|
|
|
|
+import java.io.FileOutputStream;
|
|
|
|
+import java.io.IOException;
|
|
|
|
+import java.io.OutputStreamWriter;
|
|
import java.math.RoundingMode;
|
|
import java.math.RoundingMode;
|
|
-import java.text.DecimalFormat;
|
|
|
|
import java.text.NumberFormat;
|
|
import java.text.NumberFormat;
|
|
import java.util.ArrayList;
|
|
import java.util.ArrayList;
|
|
import java.util.HashMap;
|
|
import java.util.HashMap;
|
|
import java.util.List;
|
|
import java.util.List;
|
|
-import java.util.ListIterator;
|
|
|
|
import java.util.Locale;
|
|
import java.util.Locale;
|
|
import java.util.stream.Collectors;
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
import javax.swing.BorderFactory;
|
|
import javax.swing.BorderFactory;
|
|
import javax.swing.JButton;
|
|
import javax.swing.JButton;
|
|
import javax.swing.JCheckBox;
|
|
import javax.swing.JCheckBox;
|
|
|
|
+import javax.swing.JFileChooser;
|
|
import javax.swing.JFormattedTextField;
|
|
import javax.swing.JFormattedTextField;
|
|
import javax.swing.JFrame;
|
|
import javax.swing.JFrame;
|
|
import javax.swing.JLabel;
|
|
import javax.swing.JLabel;
|
|
@@ -27,28 +29,40 @@ import javax.swing.JPanel;
|
|
import javax.swing.JScrollPane;
|
|
import javax.swing.JScrollPane;
|
|
import javax.swing.JSplitPane;
|
|
import javax.swing.JSplitPane;
|
|
import javax.swing.JTextArea;
|
|
import javax.swing.JTextArea;
|
|
-import javax.swing.JTextField;
|
|
|
|
|
|
+import javax.swing.filechooser.FileNameExtensionFilter;
|
|
import javax.swing.text.NumberFormatter;
|
|
import javax.swing.text.NumberFormatter;
|
|
|
|
|
|
import api.Algorithm;
|
|
import api.Algorithm;
|
|
import classes.AbstractCpsObject;
|
|
import classes.AbstractCpsObject;
|
|
-import classes.CpsEdge;
|
|
|
|
-import classes.CpsNode;
|
|
|
|
import classes.CpsUpperNode;
|
|
import classes.CpsUpperNode;
|
|
import classes.HolonElement;
|
|
import classes.HolonElement;
|
|
import classes.HolonObject;
|
|
import classes.HolonObject;
|
|
import classes.HolonSwitch;
|
|
import classes.HolonSwitch;
|
|
|
|
+
|
|
import ui.controller.Control;
|
|
import ui.controller.Control;
|
|
-import ui.model.IntermediateCableWithState;
|
|
|
|
import ui.model.Model;
|
|
import ui.model.Model;
|
|
-import ui.model.DecoratedCable.CableState;
|
|
|
|
|
|
+import ui.model.DecoratedHolonObject.HolonObjectState;
|
|
|
|
+import ui.model.DecoratedNetwork;
|
|
|
|
+import ui.model.DecoratedState;
|
|
|
|
|
|
public class PSOAlgotihm implements Algorithm {
|
|
public class PSOAlgotihm implements Algorithm {
|
|
//Parameter for Algo with default Values:
|
|
//Parameter for Algo with default Values:
|
|
private int swarmSize = 20;
|
|
private int swarmSize = 20;
|
|
private int maxIterations = 100;
|
|
private int maxIterations = 100;
|
|
- private double limit = 1.0;
|
|
|
|
- private double dependency = 2.01;
|
|
|
|
|
|
+ private double limit = 0.3;
|
|
|
|
+ private double dependency = 2.07;
|
|
|
|
+ private int rounds = 20;
|
|
|
|
+ private boolean append = false;
|
|
|
|
+
|
|
|
|
+ //Parameter defined by Algo
|
|
|
|
+ private HashMap<Integer, AccessWrapper> access;
|
|
|
|
+ private List<Boolean> initialState;
|
|
|
|
+ private double c1, c2, w;
|
|
|
|
+ private RunDataBase db;
|
|
|
|
+
|
|
|
|
+ //Parameter for Plotting (Default Directory in Constructor)
|
|
|
|
+ private JFileChooser fileChooser = new JFileChooser();
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
//Gui Part:
|
|
//Gui Part:
|
|
@@ -72,9 +86,12 @@ public class PSOAlgotihm implements Algorithm {
|
|
JScrollPane scrollPane = new JScrollPane(textArea);
|
|
JScrollPane scrollPane = new JScrollPane(textArea);
|
|
JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
|
|
JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
|
|
createOptionPanel() , scrollPane);
|
|
createOptionPanel() , scrollPane);
|
|
- splitPane.setResizeWeight(0.9);
|
|
|
|
|
|
+ splitPane.setResizeWeight(0.0);
|
|
content.add(splitPane, BorderLayout.CENTER);
|
|
content.add(splitPane, BorderLayout.CENTER);
|
|
- content.setPreferredSize(new Dimension(800,800));
|
|
|
|
|
|
+ content.setPreferredSize(new Dimension(800,800));
|
|
|
|
+ //Default Directory
|
|
|
|
+ fileChooser.setCurrentDirectory(new File(System.getProperty("user.dir")));
|
|
|
|
+ fileChooser.setSelectedFile(new File("plott.txt"));
|
|
}
|
|
}
|
|
public JPanel createOptionPanel() {
|
|
public JPanel createOptionPanel() {
|
|
JPanel optionPanel = new JPanel(new BorderLayout());
|
|
JPanel optionPanel = new JPanel(new BorderLayout());
|
|
@@ -97,8 +114,8 @@ public class PSOAlgotihm implements Algorithm {
|
|
swarmSizeLabel.setBounds(20, 60, 100, 20);
|
|
swarmSizeLabel.setBounds(20, 60, 100, 20);
|
|
parameterPanel.add(swarmSizeLabel);
|
|
parameterPanel.add(swarmSizeLabel);
|
|
|
|
|
|
- JLabel showDiagnosticsLabel = new JLabel("Show Diagnostic:");
|
|
|
|
- showDiagnosticsLabel.setBounds(200, 60, 110, 20);
|
|
|
|
|
|
+ JLabel showDiagnosticsLabel = new JLabel("Append Plott on existing File:");
|
|
|
|
+ showDiagnosticsLabel.setBounds(200, 60, 170, 20);
|
|
parameterPanel.add(showDiagnosticsLabel);
|
|
parameterPanel.add(showDiagnosticsLabel);
|
|
|
|
|
|
JLabel cautionLabel = new JLabel(
|
|
JLabel cautionLabel = new JLabel(
|
|
@@ -119,9 +136,15 @@ public class PSOAlgotihm implements Algorithm {
|
|
dependecyLabel.setBounds(20, 135, 100, 20);
|
|
dependecyLabel.setBounds(20, 135, 100, 20);
|
|
parameterPanel.add(dependecyLabel);
|
|
parameterPanel.add(dependecyLabel);
|
|
|
|
|
|
|
|
+ JLabel roundsLabel = new JLabel("Round:");
|
|
|
|
+ roundsLabel.setBounds(20, 160, 100, 20);
|
|
|
|
+ parameterPanel.add(roundsLabel);
|
|
|
|
+
|
|
|
|
+
|
|
JCheckBox diagnosticsCheckBox = new JCheckBox();
|
|
JCheckBox diagnosticsCheckBox = new JCheckBox();
|
|
- diagnosticsCheckBox.setSelected(true);
|
|
|
|
- diagnosticsCheckBox.setBounds(320, 60, 25, 20);
|
|
|
|
|
|
+ diagnosticsCheckBox.setSelected(false);
|
|
|
|
+ diagnosticsCheckBox.setBounds(370, 60, 25, 20);
|
|
|
|
+ diagnosticsCheckBox.addPropertyChangeListener(propertyChange -> append = diagnosticsCheckBox.isSelected());
|
|
parameterPanel.add(diagnosticsCheckBox);
|
|
parameterPanel.add(diagnosticsCheckBox);
|
|
|
|
|
|
//Integer formatter
|
|
//Integer formatter
|
|
@@ -178,6 +201,16 @@ public class PSOAlgotihm implements Algorithm {
|
|
dependencyTextField.setBounds(125, 135, 50, 20);
|
|
dependencyTextField.setBounds(125, 135, 50, 20);
|
|
parameterPanel.add(dependencyTextField);
|
|
parameterPanel.add(dependencyTextField);
|
|
|
|
|
|
|
|
+ NumberFormatter roundsFormatter = new NumberFormatter(format);
|
|
|
|
+ roundsFormatter.setMinimum(1);
|
|
|
|
+ roundsFormatter.setCommitsOnValidEdit(true);
|
|
|
|
+
|
|
|
|
+ JFormattedTextField roundsTextField = new JFormattedTextField(roundsFormatter);
|
|
|
|
+ roundsTextField.setValue(rounds);
|
|
|
|
+ roundsTextField.setToolTipText("Amount of rounds to be runed with the same starting ");
|
|
|
|
+ roundsTextField.addPropertyChangeListener(propertyChange -> rounds = Integer.parseInt((roundsTextField.getValue().toString())));
|
|
|
|
+ roundsTextField.setBounds(125, 160, 50, 20);
|
|
|
|
+ parameterPanel.add(roundsTextField);
|
|
return parameterPanel;
|
|
return parameterPanel;
|
|
}
|
|
}
|
|
public JPanel createButtonPanel() {
|
|
public JPanel createButtonPanel() {
|
|
@@ -185,16 +218,50 @@ public class PSOAlgotihm implements Algorithm {
|
|
JButton clearButton = new JButton("Clear Console");
|
|
JButton clearButton = new JButton("Clear Console");
|
|
clearButton.addActionListener(actionEvent -> clear());
|
|
clearButton.addActionListener(actionEvent -> clear());
|
|
buttonPanel.add(clearButton);
|
|
buttonPanel.add(clearButton);
|
|
|
|
+ JButton folderButton = new JButton("Change Plott-File");
|
|
|
|
+ folderButton.addActionListener(actionEvent -> setSaveFile());
|
|
|
|
+ buttonPanel.add(folderButton);
|
|
JButton plottButton = new JButton("Plott");
|
|
JButton plottButton = new JButton("Plott");
|
|
|
|
+ plottButton.addActionListener(actionEvent -> plott());
|
|
buttonPanel.add(plottButton);
|
|
buttonPanel.add(plottButton);
|
|
|
|
+ JButton resetButton = new JButton("Reset");
|
|
|
|
+ resetButton.setToolTipText("Resets the State to before the Algorithm has runed.");
|
|
|
|
+ resetButton.addActionListener(actionEvent -> reset());
|
|
|
|
+ buttonPanel.add(resetButton);
|
|
JButton runButton = new JButton("Run");
|
|
JButton runButton = new JButton("Run");
|
|
runButton.addActionListener(actionEvent -> executePsoAlgoWithCurrentParameters());
|
|
runButton.addActionListener(actionEvent -> executePsoAlgoWithCurrentParameters());
|
|
buttonPanel.add(runButton);
|
|
buttonPanel.add(runButton);
|
|
return buttonPanel;
|
|
return buttonPanel;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ private void setSaveFile() {
|
|
|
|
+ fileChooser.setFileFilter(new FileNameExtensionFilter("File", "txt"));
|
|
|
|
+ fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
|
|
|
|
+ int result = fileChooser.showSaveDialog(content);
|
|
|
|
+ if(result == JFileChooser.APPROVE_OPTION) {
|
|
|
|
+ println("Set save File to:" + fileChooser.getSelectedFile().getAbsolutePath());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ private void plott() {
|
|
|
|
+ if(db!=null) {
|
|
|
|
+ println("Plott..");
|
|
|
|
+ db.initFileStream();
|
|
|
|
+ }else {
|
|
|
|
+ println("No run inistialized.");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ private void reset() {
|
|
|
|
+ if(initialState != null) {
|
|
|
|
+ println("Resetting..");
|
|
|
|
+ resetState();
|
|
|
|
+ updateVisual();
|
|
|
|
+ }else {
|
|
|
|
+ println("No run inistialized.");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
private void printParameter() {
|
|
private void printParameter() {
|
|
- println("SwarmSize:" + swarmSize + ", MaxIter:" + maxIterations + ", Limit:" + limit + ", Dependency:" + dependency);
|
|
|
|
|
|
+ println("SwarmSize:" + swarmSize + ", MaxIter:" + maxIterations + ", Limit:" + limit + ", Dependency:" + dependency + ", Rounds:" + rounds +", DependentParameter: w:"+ w + ", c1:" + c1 + ", c2:" + c2 );
|
|
}
|
|
}
|
|
@Override
|
|
@Override
|
|
public JPanel getAlgorithmPanel() {
|
|
public JPanel getAlgorithmPanel() {
|
|
@@ -212,61 +279,321 @@ public class PSOAlgotihm implements Algorithm {
|
|
textArea.append(message);
|
|
textArea.append(message);
|
|
}
|
|
}
|
|
private void println(String message) {
|
|
private void println(String message) {
|
|
- textArea.append(message + "\n");
|
|
|
|
|
|
+ textArea.append(message + "\n");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
//Algo Part:
|
|
//Algo Part:
|
|
|
|
+ /**
|
|
|
|
+ * The Execution of the Algo its initialize the missing parameter and execute single Algo runs successively.
|
|
|
|
+ */
|
|
private void executePsoAlgoWithCurrentParameters() {
|
|
private void executePsoAlgoWithCurrentParameters() {
|
|
- println("SwarmSize:" + swarmSize + ", MaxIter:" + maxIterations + ", Limit:" + limit + ", Dependency:" + dependency);//maybe local parameter to not get override by runnign
|
|
|
|
- extractPosition(control.getModel());
|
|
|
|
-// initSwarm(startPos);
|
|
|
|
-// runFunction(model, control);
|
|
|
|
-// evaluate();
|
|
|
|
-
|
|
|
|
|
|
+ initDependentParameter();
|
|
|
|
+ printParameter();
|
|
|
|
+ Best runBest = new Best();
|
|
|
|
+ runBest.value = Double.MAX_VALUE;
|
|
|
|
+ db = new RunDataBase();
|
|
|
|
+ for(int r = 0; r < rounds; r++)
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ List<Double> runList = db.insertNewRun();
|
|
|
|
+ Best lastRunBest = executePSOoneTime(runList);
|
|
|
|
+ resetState();
|
|
|
|
+ if(lastRunBest.value < runBest.value) runBest = lastRunBest;
|
|
|
|
+ }
|
|
|
|
+ println("AlgoResult:" + runBest.value);
|
|
|
|
+ //println("[" + lastRunBest.position.stream().map(Object::toString).collect(Collectors.joining(", ")) + "]");
|
|
|
|
+ setState(runBest.position);
|
|
|
|
+ updateVisual();
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Calculate w, c1, c2
|
|
|
|
+ */
|
|
|
|
+ private void initDependentParameter() {
|
|
|
|
+ w = 1.0 / (dependency - 1 + Math.sqrt(dependency * dependency - 2 * dependency));
|
|
|
|
+ c1 = c2 = dependency * w;
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * <p>Algo from Paper:</p><font size="3"><pre>
|
|
|
|
+ *
|
|
|
|
+ * Begin
|
|
|
|
+ * t = 0; {t: generation index}
|
|
|
|
+ * initialize particles x<sub>p,i,j</sub>(t);
|
|
|
|
+ * evaluation x<sub>p,i,j</sub>(t);
|
|
|
|
+ * while (termination condition ≠ true) do
|
|
|
|
+ * v<sub>i,j</sub>(t) = update v<sub>i,j</sub>(t); {by Eq. (6)}
|
|
|
|
+ * x<sub>g,i,j</sub>(t) = update x<sub>g,i,j</sub>(t); {by Eq. (7)}
|
|
|
|
+ * x<sub>g,i,j</sub>(t) = mutation x<sub>g,i,j</sub>(t); {by Eq. (11)}
|
|
|
|
+ * x<sub>p,i,j</sub>(t) = decode x<sub>g,i,j</sub>(t); {by Eqs. (8) and (9)}
|
|
|
|
+ * evaluate x<sub>p,i,j</sub>(t);
|
|
|
|
+ * t = t + 1;
|
|
|
|
+ * end while
|
|
|
|
+ * End</pre></font>
|
|
|
|
+ * <p>with:</p><font size="3">
|
|
|
|
+ *
|
|
|
|
+ * x<sub>g,i,j</sub>: genotype ->genetic information -> in continuous space<br>
|
|
|
|
+ * x<sub>p,i,j</sub>: phenotype -> observable characteristics-> in binary space<br>
|
|
|
|
+ * X<sub>g,max</sub>: is the Maximum here set to 4.<br>
|
|
|
|
+ * Eq. (6):v<sub>i,j</sub>(t + 1) = wv<sub>i,j</sub>+c<sub>1</sub>R<sub>1</sub>(P<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))+c<sub>2</sub>R<sub>2</sub>(g<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))<br>
|
|
|
|
+ * Eq. (7):x<sub>g,i,j</sub>(t + 1) = x<sub>g,i,j</sub>(t) + v<sub>i,j</sub>(t + 1)<br>
|
|
|
|
+ * Eq. (11):<b>if(</b>rand()<r<sub>mu</sub><b>)then</b> x<sub>g,i,j</sub>(t + 1) = -x<sub>g,i,j</sub>(t + 1)<br>
|
|
|
|
+ * Eq. (8):x<sub>p,i,j</sub>(t + 1) = <b>(</b>rand() < S(x<sub>g,i,j</sub>(t + 1))<b>) ?</b> 1 <b>:</b> 0<br>
|
|
|
|
+ * Eq. (9) Sigmoid:S(x<sub>g,i,j</sub>(t + 1)) := 1/(1 + e<sup>-x<sub>g,i,j</sub>(t + 1)</sup>)<br></font>
|
|
|
|
+ * <p>Parameter:</p>
|
|
|
|
+ * w inertia, calculated from phi(Variable:{@link #dependency})<br>
|
|
|
|
+ * c1: influence, calculated from phi(Variable:{@link #dependency}) <br>
|
|
|
|
+ * c2: influence, calculated from phi(Variable:{@link #dependency})<br>
|
|
|
|
+ * r<sub>mu</sub>: probability that the proposed operation is conducted defined by limit(Variable:{@link #limit})<br>
|
|
|
|
+ *
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+ private Best executePSOoneTime(List<Double> runList) {
|
|
|
|
+ Best globalBest = new Best();
|
|
|
|
+ globalBest.position = extractPositionAndAccess(control.getModel());
|
|
|
|
+ globalBest.value = evaluatePosition(globalBest.position);
|
|
|
|
+ print("Start Value:" + globalBest.value);
|
|
|
|
+ int dimensions = globalBest.position.size();
|
|
|
|
+ List<Particle> swarm= initializeParticles(dimensions);
|
|
|
|
+ runList.add(globalBest.value);
|
|
|
|
+ evaluation(globalBest, swarm);
|
|
|
|
+ runList.add(globalBest.value);
|
|
for (int iteration = 0; iteration < maxIterations ; iteration++) {
|
|
for (int iteration = 0; iteration < maxIterations ; iteration++) {
|
|
- for (int i = 0; i < swarmSize; i++) {
|
|
|
|
-// Particle temp = swarm.getSwarm().get(i);
|
|
|
|
-
|
|
|
|
- // Binary PSO 2 (S. Lee)
|
|
|
|
- // Update Velocity
|
|
|
|
-// temp.setVelocityAdv(updateNewVelAdv(temp.getVelocityAdv(), temp.getPositionAdv(),
|
|
|
|
-// temp.getBestLocalPosAdv(), iterations));
|
|
|
|
- // Update Position
|
|
|
|
-// temp.setPositionAdv(updateNewPosAdv(temp.getVelocityAdv(), temp.getPositionAdv()));
|
|
|
|
- // Mutation Position
|
|
|
|
-// temp.setPositionAdv(mutatePos(temp.getPositionAdv()));
|
|
|
|
- // Decode Position
|
|
|
|
-// temp.setPositionAdv(decodePos(temp.getPositionAdv()));
|
|
|
|
|
|
+ for (int particleNumber = 0; particleNumber < swarmSize; particleNumber++) {
|
|
|
|
+ Particle particle = swarm.get(particleNumber);
|
|
|
|
+ for(int index = 0; index < dimensions; index++) {
|
|
|
|
+ updateVelocity(particle, index, globalBest);
|
|
|
|
+ updateGenotype(particle, index);
|
|
|
|
+ mutation(particle, index);
|
|
|
|
+ decode(particle, index);
|
|
|
|
+ }
|
|
}
|
|
}
|
|
-// plotSwarm();
|
|
|
|
-// runFunction(model, control);
|
|
|
|
-// evaluate();
|
|
|
|
|
|
+ evaluation(globalBest, swarm);
|
|
|
|
+ runList.add(globalBest.value);
|
|
}
|
|
}
|
|
|
|
+ println(" End Value:" + globalBest.value);
|
|
|
|
+ return globalBest;
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Eq. (6):v<sub>i,j</sub>(t + 1) = wv<sub>i,j</sub>+c<sub>1</sub>R<sub>1</sub>(P<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))+c<sub>2</sub>R<sub>2</sub>(g<sub>best,i,j</sub>-x<sub>p,i,j</sub>(t))<br>
|
|
|
|
+ * @param particle
|
|
|
|
+ * @param index
|
|
|
|
+ * @param globalBest
|
|
|
|
+ */
|
|
|
|
+ private void updateVelocity(Particle particle, int index, Best globalBest) {
|
|
|
|
+ double r1 = Random.nextDouble();
|
|
|
|
+ double r2 = Random.nextDouble();
|
|
|
|
+ double posValue = particle.xPhenotype.get(index)?1.0:0.0;
|
|
|
|
+ particle.velocity.set(index, clamp(w*particle.velocity.get(index) + c1*r1*((particle.localBest.position.get(index)?1.0:0.0) - posValue) + c2*r2*((globalBest.position.get(index)?1.0:0.0)- posValue)) );
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Eq. (7):x<sub>g,i,j</sub>(t + 1) = x<sub>g,i,j</sub>(t) + v<sub>i,j</sub>(t + 1)<br>
|
|
|
|
+ * @param particle
|
|
|
|
+ * @param index
|
|
|
|
+ */
|
|
|
|
+ private void updateGenotype(Particle particle, int index) {
|
|
|
|
+ particle.xGenotype.set(index, clamp(particle.xGenotype.get(index) + particle.velocity.get(index)));
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Eq. (11):<b>if(</b>rand()<r<sub>mu</sub><b>)then</b> x<sub>g,i,j</sub>(t + 1) = -x<sub>g,i,j</sub>(t + 1)<br>
|
|
|
|
+ * @param particle
|
|
|
|
+ * @param index
|
|
|
|
+ */
|
|
|
|
+ private void mutation(Particle particle, int index) {
|
|
|
|
+ if(Random.nextDouble() < limit) particle.xGenotype.set(index, -particle.xGenotype.get(index));
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Eq. (8):x<sub>p,i,j</sub>(t + 1) = <b>(</b>rand() < S(x<sub>g,i,j</sub>(t + 1))<b>) ?</b> 1 <b>:</b> 0<br>
|
|
|
|
+ * @param particle
|
|
|
|
+ * @param index
|
|
|
|
+ */
|
|
|
|
+ private void decode(Particle particle, int index) {
|
|
|
|
+ particle.xPhenotype.set(index, Random.nextDouble() < Sigmoid(particle.xGenotype.get(index)));
|
|
}
|
|
}
|
|
- private List<Boolean> extractPosition(Model model) {
|
|
|
|
- println("Start extracting");
|
|
|
|
- List<Boolean> position = new ArrayList<Boolean>();
|
|
|
|
- HashMap<Integer, AccessWrapper> access= new HashMap<Integer, AccessWrapper>();
|
|
|
|
- rollOutNodes(model.getObjectsOnCanvas(), position, access, model.getCurIteration());
|
|
|
|
- println("[" + position.stream().map(Object::toString).collect(Collectors.joining(", ")) + "]");
|
|
|
|
- ListIterator<Boolean> i = position.listIterator();
|
|
|
|
- while(i.hasNext()) {
|
|
|
|
- boolean actual = i.next();
|
|
|
|
- double randomDouble = Math.random();
|
|
|
|
- if (randomDouble < limit) {
|
|
|
|
- i.set(!actual);
|
|
|
|
- }
|
|
|
|
|
|
+ /**
|
|
|
|
+ * Eq. (9) Sigmoid:S(x<sub>g,i,j</sub>(t + 1)) := 1/(1 + e<sup>-x<sub>g,i,j</sub>(t + 1)</sup>)<br></font>
|
|
|
|
+ * @param value
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double Sigmoid(double value) {
|
|
|
|
+ return 1.0 / (1.0 + Math.exp(-value));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * To clamp X<sub>g,j,i</sub> and v<sub>i,j</sub> in Range [-X<sub>g,max</sub>|+X<sub>g,max</sub>] with {X<sub>g,max</sub>= 4}
|
|
|
|
+ * @param value
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double clamp(double value) {
|
|
|
|
+ return Math.max(-4.0, Math.min(4.0, value));
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ *
|
|
|
|
+ * @param j maximum index of position in the particle
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private List<Particle> initializeParticles(int j) {
|
|
|
|
+ List<Particle> swarm = new ArrayList<Particle>();
|
|
|
|
+ //Create The Particle
|
|
|
|
+ for (int particleNumber = 0; particleNumber < swarmSize; particleNumber++){
|
|
|
|
+ //Create a Random position
|
|
|
|
+ List<Boolean> aRandomPosition = new ArrayList<Boolean>();
|
|
|
|
+ for (int index = 0; index < j; index++){
|
|
|
|
+ aRandomPosition.add(Random.nextBoolean());
|
|
|
|
+ }
|
|
|
|
+ swarm.add(new Particle(aRandomPosition));
|
|
}
|
|
}
|
|
- println("[" + position.stream().map(Object::toString).collect(Collectors.joining(", ")) + "]");
|
|
|
|
- setState(position, access);
|
|
|
|
- updateVisual();
|
|
|
|
- return null;
|
|
|
|
|
|
+ return swarm;
|
|
}
|
|
}
|
|
- private void updateVisual() {
|
|
|
|
|
|
+ /**
|
|
|
|
+ * Evaluate each particle and update the global Best position;
|
|
|
|
+ * @param globalBest
|
|
|
|
+ * @param swarm
|
|
|
|
+ */
|
|
|
|
+ private void evaluation(Best globalBest, List<Particle> swarm) {
|
|
|
|
+ for(Particle p: swarm) {
|
|
|
|
+ double localEvaluationValue = evaluatePosition(p.xPhenotype);
|
|
|
|
+ p.checkNewEvaluationValue(localEvaluationValue);
|
|
|
|
+ if(localEvaluationValue < globalBest.value) {
|
|
|
|
+ globalBest.value = localEvaluationValue;
|
|
|
|
+ globalBest.position = p.localBest.position;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Evaluate a position.
|
|
|
|
+ * @param position
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double evaluatePosition(List<Boolean> position) {
|
|
|
|
+ setState(position);
|
|
control.calculateStateForCurrentTimeStep();
|
|
control.calculateStateForCurrentTimeStep();
|
|
- control.updateCanvas();
|
|
|
|
|
|
+ DecoratedState actualstate = control.getSimManager().getActualDecorState();
|
|
|
|
+ return getFitnessValueForState(actualstate);
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Calculate the Fitness(Penelty) Value for a state (alias the calculated Position).
|
|
|
|
+ * TODO: Make me better Rolf.
|
|
|
|
+ * @param state
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double getFitnessValueForState(DecoratedState state) {
|
|
|
|
+ double fitness = 0.0;
|
|
|
|
+ double nw_fitness =0.0;
|
|
|
|
+ double object_fitness = 0.0;
|
|
|
|
+
|
|
|
|
+ // calculate network_fitness
|
|
|
|
+ for(DecoratedNetwork net : state.getNetworkList()) {
|
|
|
|
+ float production = net.getSupplierList().stream().map(supplier -> supplier.getEnergyToSupplyNetwork()).reduce(0.0f, (a, b) -> a + b);
|
|
|
|
+ float consumption = net.getConsumerList().stream().map(con -> con.getEnergyNeededFromNetwork()).reduce(0.0f, (a, b) -> a + b);
|
|
|
|
+ nw_fitness += Math.abs(production - consumption); //Energy is now everywhere positive
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // calculate object_fitness
|
|
|
|
+ for(DecoratedNetwork net : state.getNetworkList()) {
|
|
|
|
+ object_fitness += net.getConsumerList().stream().map(con -> holonObjectSupplyPenaltyFunction(con.getSupplyBarPercentage()) + inactiveHolonElementPenalty(con.getModel())).reduce(0.0, (a, b) -> (a + b));
|
|
|
|
+ //warum war das im network fitness und nicht hier im Object fitness??
|
|
|
|
+ object_fitness += net.getPassivNoEnergyList().stream().map(con -> 1000.0).reduce(0.0, (a, b) -> (a + b));
|
|
|
|
+ object_fitness += net.getSupplierList().stream().map(sup -> inactiveHolonElementPenalty(sup.getModel())).reduce(0.0, (a, b) -> (a + b));
|
|
|
|
+ object_fitness += net.getConsumerSelfSuppliedList().stream().map(con -> inactiveHolonElementPenalty(con.getModel())).reduce(0.0, (a, b) -> (a + b));
|
|
|
|
+ }
|
|
|
|
+ fitness = nw_fitness + object_fitness;
|
|
|
|
+ return fitness;
|
|
}
|
|
}
|
|
- private void rollOutNodes(List<AbstractCpsObject> nodes, List<Boolean> positionToInit, HashMap<Integer, AccessWrapper> access, int timeStep) {
|
|
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * Untouched:
|
|
|
|
+ * Function that returns the fitness depending on the number of elements deactivated in a single holon object
|
|
|
|
+ * @param obj Holon Object that contains Holon Elements
|
|
|
|
+ * @return fitness value for that object depending on the number of deactivated holon elements
|
|
|
|
+ */
|
|
|
|
+ private double inactiveHolonElementPenalty(HolonObject obj) {
|
|
|
|
+ float result = 0;
|
|
|
|
+ int activeElements = obj.getNumberOfActiveElements();
|
|
|
|
+ int maxElements = obj.getElements().size();
|
|
|
|
+
|
|
|
|
+ if(activeElements == maxElements)
|
|
|
|
+ result =0;
|
|
|
|
+ else result = (float) Math.pow((maxElements -activeElements),2)*100;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ return result;
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Untouched:
|
|
|
|
+ * Calculates a penalty value based on the HOs current supply percentage
|
|
|
|
+ * @param supplyPercentage
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double holonObjectSupplyPenaltyFunction(float supplyPercentage) {
|
|
|
|
+ float result = 0;
|
|
|
|
+ if(supplyPercentage == 1)
|
|
|
|
+ return result;
|
|
|
|
+ else if(supplyPercentage < 1 && supplyPercentage >= 0.25) // undersupplied inbetween 25% and 100%
|
|
|
|
+ result = (float) Math.pow(1/supplyPercentage, 2);
|
|
|
|
+ else if (supplyPercentage < 0.25) //undersupplied with less than 25%
|
|
|
|
+ result = (float) Math.pow(1/supplyPercentage,2);
|
|
|
|
+ else if (supplyPercentage < 1.25) //Oversupplied less than 25%
|
|
|
|
+ result = (float) Math.pow(supplyPercentage,3) ;
|
|
|
|
+ else result = (float) Math.pow(supplyPercentage,4); //Oversupplied more than 25%
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if(Float.isInfinite(result) || Float.isNaN(result))
|
|
|
|
+ result = 1000;
|
|
|
|
+
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * If you want to get in touch with a reliable state? Working function not in use currently.
|
|
|
|
+ * @param state
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private double StateToDouble(HolonObjectState state) {
|
|
|
|
+ switch (state) {
|
|
|
|
+ case NOT_SUPPLIED:
|
|
|
|
+ return 10.0;
|
|
|
|
+ case NO_ENERGY:
|
|
|
|
+ return 15.0;
|
|
|
|
+ case OVER_SUPPLIED:
|
|
|
|
+ return 5.0;
|
|
|
|
+ case PARTIALLY_SUPPLIED:
|
|
|
|
+ return 3.0;
|
|
|
|
+ case PRODUCER:
|
|
|
|
+ return 2.0;
|
|
|
|
+ case SUPPLIED:
|
|
|
|
+ return 0;
|
|
|
|
+ default:
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * Method to get the current Position alias a ListOf Booleans for aktive settings on the Objects on the Canvas.
|
|
|
|
+ * Also initialize the Access Hashmap to swap faster positions.
|
|
|
|
+ * @param model
|
|
|
|
+ * @return
|
|
|
|
+ */
|
|
|
|
+ private List<Boolean> extractPositionAndAccess(Model model) {
|
|
|
|
+ initialState = new ArrayList<Boolean>();
|
|
|
|
+ access= new HashMap<Integer, AccessWrapper>();
|
|
|
|
+ rollOutNodes(model.getObjectsOnCanvas(), initialState, model.getCurIteration());
|
|
|
|
+ return initialState;
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Method to extract the Informations recursively out of the Model.
|
|
|
|
+ * @param nodes
|
|
|
|
+ * @param positionToInit
|
|
|
|
+ * @param timeStep
|
|
|
|
+ */
|
|
|
|
+ private void rollOutNodes(List<AbstractCpsObject> nodes, List<Boolean> positionToInit, int timeStep) {
|
|
for(AbstractCpsObject aCps : nodes) {
|
|
for(AbstractCpsObject aCps : nodes) {
|
|
if (aCps instanceof HolonObject) {
|
|
if (aCps instanceof HolonObject) {
|
|
for (HolonElement hE : ((HolonObject) aCps).getElements()) {
|
|
for (HolonElement hE : ((HolonObject) aCps).getElements()) {
|
|
@@ -280,17 +607,113 @@ public class PSOAlgotihm implements Algorithm {
|
|
access.put(positionToInit.size() - 1 , new AccessWrapper(sw));
|
|
access.put(positionToInit.size() - 1 , new AccessWrapper(sw));
|
|
}
|
|
}
|
|
else if(aCps instanceof CpsUpperNode) {
|
|
else if(aCps instanceof CpsUpperNode) {
|
|
- rollOutNodes(((CpsUpperNode)aCps).getNodes(), positionToInit, access ,timeStep );
|
|
|
|
|
|
+ rollOutNodes(((CpsUpperNode)aCps).getNodes(), positionToInit ,timeStep );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
- private void setState(List<Boolean> position, HashMap<Integer, AccessWrapper> access) {
|
|
|
|
|
|
+ /**
|
|
|
|
+ * To let the User See the current state without touching the Canvas.
|
|
|
|
+ */
|
|
|
|
+ private void updateVisual() {
|
|
|
|
+ control.calculateStateForCurrentTimeStep();
|
|
|
|
+ control.updateCanvas();
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Sets the Model back to its original State before the LAST run.
|
|
|
|
+ */
|
|
|
|
+ private void resetState() {
|
|
|
|
+ setState(initialState);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * Sets the State out of the given position for calculation or to show the user.
|
|
|
|
+ * @param position
|
|
|
|
+ */
|
|
|
|
+ private void setState(List<Boolean> position) {
|
|
for(int i = 0;i<position.size();i++) {
|
|
for(int i = 0;i<position.size();i++) {
|
|
access.get(i).setState(position.get(i));
|
|
access.get(i).setState(position.get(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
- public class AccessWrapper {
|
|
|
|
|
|
+ /**
|
|
|
|
+ * A Database for all Global Best(G<sub>Best</sub>) Values in a execution of a the Algo. For Easy Printing.
|
|
|
|
+ */
|
|
|
|
+ private class RunDataBase {
|
|
|
|
+ List<List<Double>> allRuns;
|
|
|
|
+ RunDataBase(){
|
|
|
|
+ allRuns = new ArrayList<List<Double>>();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * Initialize The Stream before you can write to a File.
|
|
|
|
+ */
|
|
|
|
+ public void initFileStream() {
|
|
|
|
+ File file = fileChooser.getSelectedFile();
|
|
|
|
+ try {
|
|
|
|
+ file.createNewFile();
|
|
|
|
+ BufferedWriter out = new BufferedWriter(new OutputStreamWriter(
|
|
|
|
+ new FileOutputStream(file, append), "UTF-8"));
|
|
|
|
+ printToStream(out);
|
|
|
|
+ out.close();
|
|
|
|
+ } catch (IOException e) {
|
|
|
|
+ println(e.getMessage());
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ *
|
|
|
|
+ * TODO: Rolf Change this method to suit your Python script respectively.
|
|
|
|
+ * A run have maxIterations + 2 values. As described: First is the InitialState Value,
|
|
|
|
+ * Second is The best Value after the swarm is Initialized not have moved jet, and then comes the Iterations that described
|
|
|
|
+ * each step of movement from the swarm.
|
|
|
|
+ */
|
|
|
|
+ public void printToStream(BufferedWriter out) throws IOException {
|
|
|
|
+ allRuns.forEach(run -> {
|
|
|
|
+ try {
|
|
|
|
+ out.write( run.stream().map(Object::toString).collect(Collectors.joining(", ")));
|
|
|
|
+ out.newLine();
|
|
|
|
+ } catch (IOException e) {
|
|
|
|
+ println(e.getMessage());
|
|
|
|
+ }
|
|
|
|
+ } );
|
|
|
|
+ out.write("AverageRun:");
|
|
|
|
+ out.newLine();
|
|
|
|
+ out.write(calculateAverageRun().stream().map(Object::toString).collect(Collectors.joining(", ")));
|
|
|
|
+ out.newLine();
|
|
|
|
+ }
|
|
|
|
+ private List<Double> calculateAverageRun(){
|
|
|
|
+ int amountOfRuns = allRuns.size();
|
|
|
|
+ List<Double> newAverageRun = new ArrayList<Double>();
|
|
|
|
+ for(int iteration = 0; iteration < maxIterations + 2; iteration++) {
|
|
|
|
+ final int currentIter = iteration;
|
|
|
|
+ double sum = 0.0;
|
|
|
|
+ sum = allRuns.stream().map(run -> run.get(currentIter)).reduce(0.0, (a, b) -> a + b);
|
|
|
|
+ newAverageRun.add(sum / amountOfRuns);
|
|
|
|
+ }
|
|
|
|
+ return newAverageRun;
|
|
|
|
+ }
|
|
|
|
+ public List<Double> insertNewRun(){
|
|
|
|
+ List<Double> newRun = new ArrayList<Double>();
|
|
|
|
+ allRuns.add(newRun);
|
|
|
|
+ return newRun;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * To give the Local Best of a Partice(P<sub>Best</sub>) or the Global Best(G<sub>Best</sub>) a Wrapper to have Position And Evaluation Value in one Place.
|
|
|
|
+ */
|
|
|
|
+ private class Best{
|
|
|
|
+ public double value;
|
|
|
|
+ public List<Boolean> position;
|
|
|
|
+ public Best(){
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * A Wrapper Class for Access HolonElement and HolonSwitch in one Element and not have to split the List.
|
|
|
|
+ */
|
|
|
|
+ private class AccessWrapper {
|
|
public static final int HOLONELEMENT = 0;
|
|
public static final int HOLONELEMENT = 0;
|
|
public static final int SWITCH = 1;
|
|
public static final int SWITCH = 1;
|
|
private int type;
|
|
private int type;
|
|
@@ -317,4 +740,68 @@ public class PSOAlgotihm implements Algorithm {
|
|
return (type == HOLONELEMENT)?hElement.isActive():hSwitch.getState(timeStep);
|
|
return (type == HOLONELEMENT)?hElement.isActive():hSwitch.getState(timeStep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+ /**
|
|
|
|
+ * Class to represent a Particle.
|
|
|
|
+ */
|
|
|
|
+ private class Particle{
|
|
|
|
+ /**
|
|
|
|
+ * The velocity of a particle.
|
|
|
|
+ */
|
|
|
|
+ public List<Double> velocity;
|
|
|
|
+ /**
|
|
|
|
+ * The positions genotype.
|
|
|
|
+ */
|
|
|
|
+ public List<Double> xGenotype;
|
|
|
|
+ /**
|
|
|
|
+ * The positions phenotype. Alias the current position.
|
|
|
|
+ */
|
|
|
|
+ public List<Boolean> xPhenotype;
|
|
|
|
+
|
|
|
|
+ public Best localBest;
|
|
|
|
+
|
|
|
|
+ Particle(List<Boolean> position){
|
|
|
|
+ this.xPhenotype = position;
|
|
|
|
+ //Init velocity, xGenotype with 0.0 values.
|
|
|
|
+ this.velocity = position.stream().map(bool -> 0.0).collect(Collectors.toList());
|
|
|
|
+ this.xGenotype = position.stream().map(bool -> 0.0).collect(Collectors.toList());
|
|
|
|
+ localBest = new Best();
|
|
|
|
+ localBest.value = Double.MAX_VALUE;
|
|
|
|
+ }
|
|
|
|
+ public void checkNewEvaluationValue(double newEvaluationValue) {
|
|
|
|
+ if(newEvaluationValue < localBest.value) {
|
|
|
|
+ localBest.value = newEvaluationValue;
|
|
|
|
+ localBest.position = xPhenotype.stream().map(bool -> bool).collect(Collectors.toList());
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ public String toString() {
|
|
|
|
+ return "Particle with xPhenotype(Position), xGenotype, velocity:["
|
|
|
|
+ + listToString(xPhenotype) + "],[" + listToString(xGenotype) + "],["
|
|
|
|
+ + listToString(velocity) + "]";
|
|
|
|
+ }
|
|
|
|
+ private <Type> String listToString(List<Type> list) {
|
|
|
|
+ return list.stream().map(Object::toString).collect(Collectors.joining(", "));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * To create Random and maybe switch the random generation in the future.
|
|
|
|
+ */
|
|
|
|
+ private static class Random{
|
|
|
|
+ /**
|
|
|
|
+ * True or false
|
|
|
|
+ * @return the random boolean.
|
|
|
|
+ */
|
|
|
|
+ public static boolean nextBoolean(){
|
|
|
|
+ return (Math.random() < 0.5);
|
|
|
|
+ }
|
|
|
|
+ /**
|
|
|
|
+ * Between 0.0 and 1.0
|
|
|
|
+ * @return the random double.
|
|
|
|
+ */
|
|
|
|
+ public static double nextDouble(){
|
|
|
|
+ return Math.random();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
}
|
|
}
|