threads.scad 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * ISO-standard metric threads, following this specification:
  3. * http://en.wikipedia.org/wiki/ISO_metric_screw_thread
  4. *
  5. * Copyright 2020 Dan Kirshner - dan_kirshner@yahoo.com
  6. * This program is free software: you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation, either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * See <http://www.gnu.org/licenses/>.
  17. *
  18. * Version 2.5. 2020-04-11 Leadin option works for internal threads.
  19. * Version 2.4. 2019-07-14 Add test option - do not render threads.
  20. * Version 2.3. 2017-08-31 Default for leadin: 0 (best for internal threads).
  21. * Version 2.2. 2017-01-01 Correction for angle; leadfac option. (Thanks to
  22. * Andrew Allen <a2intl@gmail.com>.)
  23. * Version 2.1. 2016-12-04 Chamfer bottom end (low-z); leadin option.
  24. * Version 2.0. 2016-11-05 Backwards compatibility (earlier OpenSCAD) fixes.
  25. * Version 1.9. 2016-07-03 Option: tapered.
  26. * Version 1.8. 2016-01-08 Option: (non-standard) angle.
  27. * Version 1.7. 2015-11-28 Larger x-increment - for small-diameters.
  28. * Version 1.6. 2015-09-01 Options: square threads, rectangular threads.
  29. * Version 1.5. 2015-06-12 Options: thread_size, groove.
  30. * Version 1.4. 2014-10-17 Use "faces" instead of "triangles" for polyhedron
  31. * Version 1.3. 2013-12-01 Correct loop over turns -- don't have early cut-off
  32. * Version 1.2. 2012-09-09 Use discrete polyhedra rather than linear_extrude ()
  33. * Version 1.1. 2012-09-07 Corrected to right-hand threads!
  34. */
  35. // Examples.
  36. //
  37. // Standard M8 x 1.
  38. // metric_thread (diameter=8, pitch=1, length=4);
  39. // Square thread.
  40. // metric_thread (diameter=8, pitch=1, length=4, square=true);
  41. // Non-standard: long pitch, same thread size.
  42. //metric_thread (diameter=8, pitch=4, length=4, thread_size=1, groove=true);
  43. // Non-standard: 20 mm diameter, long pitch, square "trough" width 3 mm,
  44. // depth 1 mm.
  45. //metric_thread (diameter=20, pitch=8, length=16, square=true, thread_size=6,
  46. // groove=true, rectangle=0.333);
  47. // English: 1/4 x 20.
  48. //english_thread (diameter=1/4, threads_per_inch=20, length=1);
  49. // Tapered. Example -- pipe size 3/4" -- per:
  50. // http://www.engineeringtoolbox.com/npt-national-pipe-taper-threads-d_750.html
  51. // english_thread (diameter=1.05, threads_per_inch=14, length=3/4, taper=1/16);
  52. // Thread for mounting on Rohloff hub.
  53. //difference () {
  54. // cylinder (r=20, h=10, $fn=100);
  55. //
  56. // metric_thread (diameter=34, pitch=1, length=10, internal=true, n_starts=6);
  57. //}
  58. // ----------------------------------------------------------------------------
  59. function segments (diameter) = min (50, max (ceil (diameter*6), 25));
  60. // ----------------------------------------------------------------------------
  61. // diameter - outside diameter of threads in mm. Default: 8.
  62. // pitch - thread axial "travel" per turn in mm. Default: 1.
  63. // length - overall axial length of thread in mm. Default: 1.
  64. // internal - true = clearances for internal thread (e.g., a nut).
  65. // false = clearances for external thread (e.g., a bolt).
  66. // (Internal threads should be "cut out" from a solid using
  67. // difference ()). Default: false.
  68. // n_starts - Number of thread starts (e.g., DNA, a "double helix," has
  69. // n_starts=2). See wikipedia Screw_thread. Default: 1.
  70. // thread_size - (non-standard) axial width of a single thread "V" - independent
  71. // of pitch. Default: same as pitch.
  72. // groove - (non-standard) true = subtract inverted "V" from cylinder
  73. // (rather thanadd protruding "V" to cylinder). Default: false.
  74. // square - true = square threads (per
  75. // https://en.wikipedia.org/wiki/Square_thread_form). Default:
  76. // false.
  77. // rectangle - (non-standard) "Rectangular" thread - ratio depth/(axial) width
  78. // Default: 0 (standard "v" thread).
  79. // angle - (non-standard) angle (deg) of thread side from perpendicular to
  80. // axis (default = standard = 30 degrees).
  81. // taper - diameter change per length (National Pipe Thread/ANSI B1.20.1
  82. // is 1" diameter per 16" length). Taper decreases from 'diameter'
  83. // as z increases. Default: 0 (no taper).
  84. // leadin - 0 (default): no chamfer; 1: chamfer (45 degree) at max-z end;
  85. // 2: chamfer at both ends, 3: chamfer at z=0 end.
  86. // leadfac - scale of leadin chamfer length (default: 1.0 = 1/2 thread).
  87. // test - true = do not render threads (just draw "blank" cylinder).
  88. // Default: false (draw threads).
  89. module metric_thread (diameter=8, pitch=1, length=1, internal=false, n_starts=1,
  90. thread_size=-1, groove=false, square=false, rectangle=0,
  91. angle=30, taper=0, leadin=0, leadfac=1.0, test=false)
  92. {
  93. // thread_size: size of thread "V" different than travel per turn (pitch).
  94. // Default: same as pitch.
  95. local_thread_size = thread_size == -1 ? pitch : thread_size;
  96. local_rectangle = rectangle ? rectangle : 1;
  97. n_segments = segments (diameter);
  98. h = (test && ! internal) ? 0 : (square || rectangle) ? local_thread_size*local_rectangle/2 : local_thread_size / (2 * tan(angle));
  99. h_fac1 = (square || rectangle) ? 0.90 : 0.625;
  100. // External thread includes additional relief.
  101. h_fac2 = (square || rectangle) ? 0.95 : 5.3/8;
  102. tapered_diameter = diameter - length*taper;
  103. difference () {
  104. union () {
  105. if (! groove) {
  106. if (! test) {
  107. metric_thread_turns (diameter, pitch, length, internal, n_starts,
  108. local_thread_size, groove, square, rectangle, angle,
  109. taper);
  110. }
  111. }
  112. difference () {
  113. // Solid center, including Dmin truncation.
  114. if (groove) {
  115. cylinder (r1=diameter/2, r2=tapered_diameter/2,
  116. h=length, $fn=n_segments);
  117. } else if (internal) {
  118. cylinder (r1=diameter/2 - h*h_fac1, r2=tapered_diameter/2 - h*h_fac1,
  119. h=length, $fn=n_segments);
  120. } else {
  121. // External thread.
  122. cylinder (r1=diameter/2 - h*h_fac2, r2=tapered_diameter/2 - h*h_fac2,
  123. h=length, $fn=n_segments);
  124. }
  125. if (groove) {
  126. if (! test) {
  127. metric_thread_turns (diameter, pitch, length, internal, n_starts,
  128. local_thread_size, groove, square, rectangle,
  129. angle, taper);
  130. }
  131. }
  132. }
  133. // Internal thread lead-in: take away from external solid.
  134. if (internal) {
  135. // "Negative chamfer" z=0 end if leadin is 2 or 3.
  136. if (leadin == 2 || leadin == 3) {
  137. cylinder (r1=diameter/2, r2=diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
  138. $fn=n_segments);
  139. }
  140. // "Negative chamfer" z-max end if leadin is 1 or 2.
  141. if (leadin == 1 || leadin == 2) {
  142. translate ([0, 0, length + 0.05 - h*h_fac1*leadfac]) {
  143. cylinder (r1=tapered_diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
  144. r2=tapered_diameter/2,
  145. $fn=n_segments);
  146. }
  147. }
  148. }
  149. }
  150. if (! internal) {
  151. // Chamfer z=0 end if leadin is 2 or 3.
  152. if (leadin == 2 || leadin == 3) {
  153. difference () {
  154. cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments);
  155. cylinder (r2=diameter/2, r1=diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
  156. $fn=n_segments);
  157. }
  158. }
  159. // Chamfer z-max end if leadin is 1 or 2.
  160. if (leadin == 1 || leadin == 2) {
  161. translate ([0, 0, length + 0.05 - h*h_fac1*leadfac]) {
  162. difference () {
  163. cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments);
  164. cylinder (r1=tapered_diameter/2, r2=tapered_diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
  165. $fn=n_segments);
  166. }
  167. }
  168. }
  169. }
  170. }
  171. }
  172. // ----------------------------------------------------------------------------
  173. // Input units in inches.
  174. // Note: units of measure in drawing are mm!
  175. module english_thread (diameter=0.25, threads_per_inch=20, length=1,
  176. internal=false, n_starts=1, thread_size=-1, groove=false,
  177. square=false, rectangle=0, angle=30, taper=0, leadin=0,
  178. leadfac=1.0, test=false)
  179. {
  180. // Convert to mm.
  181. mm_diameter = diameter*25.4;
  182. mm_pitch = (1.0/threads_per_inch)*25.4;
  183. mm_length = length*25.4;
  184. echo (str ("mm_diameter: ", mm_diameter));
  185. echo (str ("mm_pitch: ", mm_pitch));
  186. echo (str ("mm_length: ", mm_length));
  187. metric_thread (mm_diameter, mm_pitch, mm_length, internal, n_starts,
  188. thread_size, groove, square, rectangle, angle, taper, leadin,
  189. leadfac, test);
  190. }
  191. // ----------------------------------------------------------------------------
  192. module metric_thread_turns (diameter, pitch, length, internal, n_starts,
  193. thread_size, groove, square, rectangle, angle,
  194. taper)
  195. {
  196. // Number of turns needed.
  197. n_turns = floor (length/pitch);
  198. intersection () {
  199. // Start one below z = 0. Gives an extra turn at each end.
  200. for (i=[-1*n_starts : n_turns+1]) {
  201. translate ([0, 0, i*pitch]) {
  202. metric_thread_turn (diameter, pitch, internal, n_starts,
  203. thread_size, groove, square, rectangle, angle,
  204. taper, i*pitch);
  205. }
  206. }
  207. // Cut to length.
  208. translate ([0, 0, length/2]) {
  209. cube ([diameter*3, diameter*3, length], center=true);
  210. }
  211. }
  212. }
  213. // ----------------------------------------------------------------------------
  214. module metric_thread_turn (diameter, pitch, internal, n_starts, thread_size,
  215. groove, square, rectangle, angle, taper, z)
  216. {
  217. n_segments = segments (diameter);
  218. fraction_circle = 1.0/n_segments;
  219. for (i=[0 : n_segments-1]) {
  220. rotate ([0, 0, i*360*fraction_circle]) {
  221. translate ([0, 0, i*n_starts*pitch*fraction_circle]) {
  222. //current_diameter = diameter - taper*(z + i*n_starts*pitch*fraction_circle);
  223. thread_polyhedron ((diameter - taper*(z + i*n_starts*pitch*fraction_circle))/2,
  224. pitch, internal, n_starts, thread_size, groove,
  225. square, rectangle, angle);
  226. }
  227. }
  228. }
  229. }
  230. // ----------------------------------------------------------------------------
  231. module thread_polyhedron (radius, pitch, internal, n_starts, thread_size,
  232. groove, square, rectangle, angle)
  233. {
  234. n_segments = segments (radius*2);
  235. fraction_circle = 1.0/n_segments;
  236. local_rectangle = rectangle ? rectangle : 1;
  237. h = (square || rectangle) ? thread_size*local_rectangle/2 : thread_size / (2 * tan(angle));
  238. outer_r = radius + (internal ? h/20 : 0); // Adds internal relief.
  239. //echo (str ("outer_r: ", outer_r));
  240. // A little extra on square thread -- make sure overlaps cylinder.
  241. h_fac1 = (square || rectangle) ? 1.1 : 0.875;
  242. inner_r = radius - h*h_fac1; // Does NOT do Dmin_truncation - do later with
  243. // cylinder.
  244. translate_y = groove ? outer_r + inner_r : 0;
  245. reflect_x = groove ? 1 : 0;
  246. // Make these just slightly bigger (keep in proportion) so polyhedra will
  247. // overlap.
  248. x_incr_outer = (! groove ? outer_r : inner_r) * fraction_circle * 2 * PI * 1.02;
  249. x_incr_inner = (! groove ? inner_r : outer_r) * fraction_circle * 2 * PI * 1.02;
  250. z_incr = n_starts * pitch * fraction_circle * 1.005;
  251. /*
  252. (angles x0 and x3 inner are actually 60 deg)
  253. /\ (x2_inner, z2_inner) [2]
  254. / \
  255. (x3_inner, z3_inner) / \
  256. [3] \ \
  257. |\ \ (x2_outer, z2_outer) [6]
  258. | \ /
  259. | \ /|
  260. z |[7]\/ / (x1_outer, z1_outer) [5]
  261. | | | /
  262. | x | |/
  263. | / | / (x0_outer, z0_outer) [4]
  264. | / | / (behind: (x1_inner, z1_inner) [1]
  265. |/ | /
  266. y________| |/
  267. (r) / (x0_inner, z0_inner) [0]
  268. */
  269. x1_outer = outer_r * fraction_circle * 2 * PI;
  270. z0_outer = (outer_r - inner_r) * tan(angle);
  271. //echo (str ("z0_outer: ", z0_outer));
  272. //polygon ([[inner_r, 0], [outer_r, z0_outer],
  273. // [outer_r, 0.5*pitch], [inner_r, 0.5*pitch]]);
  274. z1_outer = z0_outer + z_incr;
  275. // Give internal square threads some clearance in the z direction, too.
  276. bottom = internal ? 0.235 : 0.25;
  277. top = internal ? 0.765 : 0.75;
  278. translate ([0, translate_y, 0]) {
  279. mirror ([reflect_x, 0, 0]) {
  280. if (square || rectangle) {
  281. // Rule for face ordering: look at polyhedron from outside: points must
  282. // be in clockwise order.
  283. polyhedron (
  284. points = [
  285. [-x_incr_inner/2, -inner_r, bottom*thread_size], // [0]
  286. [x_incr_inner/2, -inner_r, bottom*thread_size + z_incr], // [1]
  287. [x_incr_inner/2, -inner_r, top*thread_size + z_incr], // [2]
  288. [-x_incr_inner/2, -inner_r, top*thread_size], // [3]
  289. [-x_incr_outer/2, -outer_r, bottom*thread_size], // [4]
  290. [x_incr_outer/2, -outer_r, bottom*thread_size + z_incr], // [5]
  291. [x_incr_outer/2, -outer_r, top*thread_size + z_incr], // [6]
  292. [-x_incr_outer/2, -outer_r, top*thread_size] // [7]
  293. ],
  294. faces = [
  295. [0, 3, 7, 4], // This-side trapezoid
  296. [1, 5, 6, 2], // Back-side trapezoid
  297. [0, 1, 2, 3], // Inner rectangle
  298. [4, 7, 6, 5], // Outer rectangle
  299. // These are not planar, so do with separate triangles.
  300. [7, 2, 6], // Upper rectangle, bottom
  301. [7, 3, 2], // Upper rectangle, top
  302. [0, 5, 1], // Lower rectangle, bottom
  303. [0, 4, 5] // Lower rectangle, top
  304. ]
  305. );
  306. } else {
  307. // Rule for face ordering: look at polyhedron from outside: points must
  308. // be in clockwise order.
  309. polyhedron (
  310. points = [
  311. [-x_incr_inner/2, -inner_r, 0], // [0]
  312. [x_incr_inner/2, -inner_r, z_incr], // [1]
  313. [x_incr_inner/2, -inner_r, thread_size + z_incr], // [2]
  314. [-x_incr_inner/2, -inner_r, thread_size], // [3]
  315. [-x_incr_outer/2, -outer_r, z0_outer], // [4]
  316. [x_incr_outer/2, -outer_r, z0_outer + z_incr], // [5]
  317. [x_incr_outer/2, -outer_r, thread_size - z0_outer + z_incr], // [6]
  318. [-x_incr_outer/2, -outer_r, thread_size - z0_outer] // [7]
  319. ],
  320. faces = [
  321. [0, 3, 7, 4], // This-side trapezoid
  322. [1, 5, 6, 2], // Back-side trapezoid
  323. [0, 1, 2, 3], // Inner rectangle
  324. [4, 7, 6, 5], // Outer rectangle
  325. // These are not planar, so do with separate triangles.
  326. [7, 2, 6], // Upper rectangle, bottom
  327. [7, 3, 2], // Upper rectangle, top
  328. [0, 5, 1], // Lower rectangle, bottom
  329. [0, 4, 5] // Lower rectangle, top
  330. ]
  331. );
  332. }
  333. }
  334. }
  335. }