// Copyright 2016 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Modified by Unity from original: // https://github.com/googlevr/gvr-unity-sdk/blob/master/Assets/GoogleVR/Scripts/Controller/ArmModel/GvrArmModel.cs using System.Collections; using System.Collections.Generic; using UnityEngine; #if ENABLE_VR || ENABLE_AR using UnityEngine.SpatialTracking; using UnityEngine.Experimental.XR.Interaction; namespace UnityEngine.XR.LegacyInputHelpers { public class ArmModel : BasePoseProvider { /// Gets the Pose value from the calculated arm model. as the model returns both position and rotation in all cases, we set both flags on return if successful. public override PoseDataFlags GetPoseFromProvider(out Pose output) { if (OnControllerInputUpdated()) { output = finalPose; return PoseDataFlags.Position | PoseDataFlags.Rotation; } output = Pose.identity; return PoseDataFlags.NoData; } Pose m_FinalPose; /// /// the pose which represents the final tracking result of the arm model /// public Pose finalPose { get { return m_FinalPose; } set { m_FinalPose = value; } } [SerializeField] XRNode m_PoseSource = XRNode.LeftHand; /// /// the pose to use as the input 3DOF position /// public XRNode poseSource { get { return m_PoseSource; } set { m_PoseSource = value; } } [SerializeField] XRNode m_HeadPoseSource = XRNode.CenterEye; /// /// The game object which represents the "head" position of the user /// public XRNode headGameObject { get { return m_HeadPoseSource; } set { m_HeadPoseSource = value; } } /// Standard implementation for a mathematical model to make the virtual controller approximate the /// physical location of the Daydream controller. [SerializeField] Vector3 m_ElbowRestPosition = DEFAULT_ELBOW_REST_POSITION; /// /// Position of the elbow joint relative to the head before the arm model is applied. /// public Vector3 elbowRestPosition { get { return m_ElbowRestPosition; } set { m_ElbowRestPosition = value; } } [SerializeField] Vector3 m_WristRestPosition = DEFAULT_WRIST_REST_POSITION; /// /// Position of the wrist joint relative to the elbow before the arm model is applied. /// public Vector3 wristRestPosition { get { return m_WristRestPosition; } set { m_WristRestPosition = value; } } [SerializeField] Vector3 m_ControllerRestPosition = DEFAULT_CONTROLLER_REST_POSITION; /// /// Position of the controller joint relative to the wrist before the arm model is applied. /// public Vector3 controllerRestPosition { get { return m_ControllerRestPosition; } set { m_ControllerRestPosition = value; } } [SerializeField] Vector3 m_ArmExtensionOffset = DEFAULT_ARM_EXTENSION_OFFSET; /// /// Offset applied to the elbow position as the controller is rotated upwards. /// public Vector3 armExtensionOffset { get { return m_ArmExtensionOffset; } set { m_ArmExtensionOffset = value; } } [Range(0.0f, 1.0f)] [SerializeField] float m_ElbowBendRatio = DEFAULT_ELBOW_BEND_RATIO; /// /// Ratio of the controller's rotation to apply to the rotation of the elbow. /// The remaining rotation is applied to the wrist's rotation. /// public float elbowBendRatio { get { return m_ElbowBendRatio; } set { m_ElbowBendRatio = value; } } [SerializeField] bool m_IsLockedToNeck = true; /// /// If true, the root of the pose is locked to the local position of the player's neck. /// public bool isLockedToNeck { get { return m_IsLockedToNeck; } set { m_IsLockedToNeck = value; } } /// Represent the neck's position relative to the user's head. /// If isLockedToNeck is true, this will be the InputTracking position of the Head node modified /// by an inverse neck model to approximate the neck position. /// Otherwise, it is always zero. public Vector3 neckPosition { get { return m_NeckPosition; } } /// Represent the shoulder's position relative to the user's head. /// This is not actually used as part of the arm model calculations, and exists for debugging. public Vector3 shoulderPosition { get { Vector3 retVal = m_NeckPosition + m_TorsoRotation * Vector3.Scale(SHOULDER_POSITION, m_HandedMultiplier); return retVal; } } /// Represent the shoulder's rotation relative to the user's head. /// This is not actually used as part of the arm model calculations, and exists for debugging. public Quaternion shoulderRotation { get { return m_TorsoRotation; } } /// Represent the elbow's position relative to the user's head. public Vector3 elbowPosition { get { return m_ElbowPosition; } } /// Represent the elbow's rotation relative to the user's head. public Quaternion elbowRotation { get { return m_ElbowRotation; } } /// Represent the wrist's position relative to the user's head. public Vector3 wristPosition { get { return m_WristPosition; } } /// Represent the wrist's rotation relative to the user's head. public Quaternion wristRotation { get { return m_WristRotation; } } /// Represent the controller's position relative to the head pose public Vector3 controllerPosition { get { return m_ControllerPosition; } } /// Represent the controllers rotation relative to the user's head. public Quaternion controllerRotation { get { return m_ControllerRotation; } } #if UNITY_EDITOR /// Editor only API to allow querying the torso forward direction public Vector3 torsoDirection { get { return m_TorsoDirection; } } /// Editor only API to allow querying the torso rotation public Quaternion torsoRotation { get { return m_TorsoRotation; } } #endif protected Vector3 m_NeckPosition; protected Vector3 m_ElbowPosition; protected Quaternion m_ElbowRotation; protected Vector3 m_WristPosition; protected Quaternion m_WristRotation; protected Vector3 m_ControllerPosition; protected Quaternion m_ControllerRotation; /// Multiplier for handedness such that 1 = Right, 0 = Center, -1 = left. protected Vector3 m_HandedMultiplier; /// Forward direction of user's torso. protected Vector3 m_TorsoDirection; /// Orientation of the user's torso. protected Quaternion m_TorsoRotation; // Default values for tuning variables. protected static readonly Vector3 DEFAULT_ELBOW_REST_POSITION = new Vector3(0.195f, -0.5f, 0.005f); protected static readonly Vector3 DEFAULT_WRIST_REST_POSITION = new Vector3(0.0f, 0.0f, 0.25f); protected static readonly Vector3 DEFAULT_CONTROLLER_REST_POSITION = new Vector3(0.0f, 0.0f, 0.05f); protected static readonly Vector3 DEFAULT_ARM_EXTENSION_OFFSET = new Vector3(-0.13f, 0.14f, 0.08f); protected const float DEFAULT_ELBOW_BEND_RATIO = 0.6f; /// Increases elbow bending as the controller moves up (unitless). protected const float EXTENSION_WEIGHT = 0.4f; /// Rest position for shoulder joint. protected static readonly Vector3 SHOULDER_POSITION = new Vector3(0.17f, -0.2f, -0.03f); /// Neck offset used to apply the inverse neck model when locked to the head. protected static readonly Vector3 NECK_OFFSET = new Vector3(0.0f, 0.075f, 0.08f); /// Angle ranges the for arm extension offset to start and end (degrees). protected const float MIN_EXTENSION_ANGLE = 7.0f; protected const float MAX_EXTENSION_ANGLE = 60.0f; protected virtual void OnEnable() { // Force the torso direction to match the gaze direction immediately. // Otherwise, the controller will not be positioned correctly if the ArmModel was enabled // when the user wasn't facing forward. UpdateTorsoDirection(true); // Update immediately to avoid a frame delay before the arm model is applied. OnControllerInputUpdated(); } protected virtual void OnDisable() { } public virtual bool OnControllerInputUpdated() { UpdateHandedness(); if (UpdateTorsoDirection(false)) { if (UpdateNeckPosition()) { if (ApplyArmModel()) { return true; } } } return false; } protected virtual void UpdateHandedness() { // Determine handedness multiplier. m_HandedMultiplier.Set(0, 1, 1); if (m_PoseSource == XRNode.RightHand || m_PoseSource == XRNode.TrackingReference) { m_HandedMultiplier.x = 1.0f; } else if (m_PoseSource == XRNode.LeftHand) { m_HandedMultiplier.x = -1.0f; } } protected virtual bool UpdateTorsoDirection(bool forceImmediate) { // Determine the gaze direction horizontally. Vector3 gazeDirection = new Vector3(); if (TryGetForwardVector(m_HeadPoseSource, out gazeDirection)) { gazeDirection.y = 0.0f; gazeDirection.Normalize(); // Use the gaze direction to update the forward direction. if (forceImmediate) { m_TorsoDirection = gazeDirection; } else { Vector3 angAccel; if (TryGetAngularAcceleration(poseSource, out angAccel)) { float angularVelocity = angAccel.magnitude; float gazeFilterStrength = Mathf.Clamp((angularVelocity - 0.2f) / 45.0f, 0.0f, 0.1f); m_TorsoDirection = Vector3.Slerp(m_TorsoDirection, gazeDirection, gazeFilterStrength); } } // Calculate the torso rotation. m_TorsoRotation = Quaternion.FromToRotation(Vector3.forward, m_TorsoDirection); return true; } return false; } protected virtual bool UpdateNeckPosition() { if (m_IsLockedToNeck && TryGetPosition(m_HeadPoseSource, out m_NeckPosition)) { // Find the approximate neck position by Applying an inverse neck model. // This transforms the head position to the center of the head and also accounts // for the head's rotation so that the motion feels more natural. return ApplyInverseNeckModel(m_NeckPosition, out m_NeckPosition); } else { m_NeckPosition = Vector3.zero; return true; } } protected virtual bool ApplyArmModel() { // Set the starting positions of the joints before they are transformed by the arm model. SetUntransformedJointPositions(); // Get the controller's orientation. Quaternion controllerOrientation; Quaternion xyRotation; float xAngle; if (GetControllerRotation(out controllerOrientation, out xyRotation, out xAngle)) { // Offset the elbow by the extension offset. float extensionRatio = CalculateExtensionRatio(xAngle); ApplyExtensionOffset(extensionRatio); // Calculate the lerp rotation, which is used to control how much the rotation of the // controller impacts each joint. Quaternion lerpRotation = CalculateLerpRotation(xyRotation, extensionRatio); CalculateFinalJointRotations(controllerOrientation, xyRotation, lerpRotation); ApplyRotationToJoints(); m_FinalPose.position = m_ControllerPosition; m_FinalPose.rotation = m_ControllerRotation; return true; } return false; } /// Set the starting positions of the joints before they are transformed by the arm model. protected virtual void SetUntransformedJointPositions() { m_ElbowPosition = Vector3.Scale(m_ElbowRestPosition, m_HandedMultiplier); m_WristPosition = Vector3.Scale(m_WristRestPosition, m_HandedMultiplier); m_ControllerPosition = Vector3.Scale(m_ControllerRestPosition, m_HandedMultiplier); } /// Calculate the extension ratio based on the angle of the controller along the x axis. protected virtual float CalculateExtensionRatio(float xAngle) { float normalizedAngle = (xAngle - MIN_EXTENSION_ANGLE) / (MAX_EXTENSION_ANGLE - MIN_EXTENSION_ANGLE); float extensionRatio = Mathf.Clamp(normalizedAngle, 0.0f, 1.0f); return extensionRatio; } /// Offset the elbow by the extension offset. protected virtual void ApplyExtensionOffset(float extensionRatio) { Vector3 extensionOffset = Vector3.Scale(m_ArmExtensionOffset, m_HandedMultiplier); m_ElbowPosition += extensionOffset * extensionRatio; } /// Calculate the lerp rotation, which is used to control how much the rotation of the /// controller impacts each joint. protected virtual Quaternion CalculateLerpRotation(Quaternion xyRotation, float extensionRatio) { float totalAngle = Quaternion.Angle(xyRotation, Quaternion.identity); float lerpSuppresion = 1.0f - Mathf.Pow(totalAngle / 180.0f, 6.0f); float inverseElbowBendRatio = 1.0f - m_ElbowBendRatio; float lerpValue = inverseElbowBendRatio + m_ElbowBendRatio * extensionRatio * EXTENSION_WEIGHT; lerpValue *= lerpSuppresion; return Quaternion.Lerp(Quaternion.identity, xyRotation, lerpValue); } /// Determine the final joint rotations relative to the head. protected virtual void CalculateFinalJointRotations(Quaternion controllerOrientation, Quaternion xyRotation, Quaternion lerpRotation) { m_ElbowRotation = m_TorsoRotation * Quaternion.Inverse(lerpRotation) * xyRotation; m_WristRotation = m_ElbowRotation * lerpRotation; m_ControllerRotation = m_TorsoRotation * controllerOrientation; } /// Apply the joint rotations to the positions of the joints to determine the final pose. protected virtual void ApplyRotationToJoints() { m_ElbowPosition = m_NeckPosition + m_TorsoRotation * m_ElbowPosition; m_WristPosition = m_ElbowPosition + m_ElbowRotation * m_WristPosition; m_ControllerPosition = m_WristPosition + m_WristRotation * m_ControllerPosition; } /// Transform the head position into an approximate neck position. protected virtual bool ApplyInverseNeckModel(Vector3 headPosition, out Vector3 calculatedPosition) { // Determine the gaze direction horizontally. Quaternion headRotation = new Quaternion(); if (TryGetRotation(m_HeadPoseSource, out headRotation)) { Vector3 rotatedNeckOffset = headRotation * NECK_OFFSET - NECK_OFFSET.y * Vector3.up; headPosition -= rotatedNeckOffset; calculatedPosition = headPosition; return true; } calculatedPosition = Vector3.zero; return false; } protected bool TryGetForwardVector(XRNode node, out Vector3 forward) { Pose tmpPose = new Pose(); if (TryGetRotation(node, out tmpPose.rotation) && TryGetPosition(node, out tmpPose.position)) { forward = tmpPose.forward; return true; } forward = Vector3.zero; return false; } List xrNodeStateListOrientation = new List(); protected bool TryGetRotation(XRNode node, out Quaternion rotation) { XR.InputTracking.GetNodeStates(xrNodeStateListOrientation); var length = xrNodeStateListOrientation.Count; XRNodeState nodeState; for (int i = 0; i < length; ++i) { nodeState = xrNodeStateListOrientation[i]; if (nodeState.nodeType == node) { if (nodeState.TryGetRotation(out rotation)) { return true; } } } rotation = Quaternion.identity; return false; } List xrNodeStateListPosition = new List(); protected bool TryGetPosition(XRNode node, out Vector3 position) { XR.InputTracking.GetNodeStates(xrNodeStateListPosition); var length = xrNodeStateListPosition.Count; XRNodeState nodeState; for (int i = 0; i < length; ++i) { nodeState = xrNodeStateListPosition[i]; if (nodeState.nodeType == node) { if (nodeState.TryGetPosition(out position)) { return true; } } } position = Vector3.zero; return false; } List xrNodeStateListAngularAcceleration = new List(); protected bool TryGetAngularAcceleration(XRNode node, out Vector3 angularAccel) { XR.InputTracking.GetNodeStates(xrNodeStateListAngularAcceleration); var length = xrNodeStateListAngularAcceleration.Count; XRNodeState nodeState; for (int i = 0; i < length; ++i) { nodeState = xrNodeStateListAngularAcceleration[i]; if (nodeState.nodeType == node) { if (nodeState.TryGetAngularAcceleration(out angularAccel)) { return true; } } } angularAccel = Vector3.zero; return false; } List xrNodeStateListAngularVelocity = new List(); protected bool TryGetAngularVelocity(XRNode node, out Vector3 angVel) { XR.InputTracking.GetNodeStates(xrNodeStateListAngularVelocity); var length = xrNodeStateListAngularVelocity.Count; XRNodeState nodeState; for (int i = 0; i < length; ++i) { nodeState = xrNodeStateListAngularVelocity[i]; if (nodeState.nodeType == node) { if (nodeState.TryGetAngularVelocity(out angVel)) { return true; } } } angVel = Vector3.zero; return false; } /// Get the controller's orientation. protected bool GetControllerRotation(out Quaternion rotation, out Quaternion xyRotation, out float xAngle) { // Find the controller's orientation relative to the player. if (TryGetRotation(poseSource, out rotation)) { rotation = Quaternion.Inverse(m_TorsoRotation) * rotation; // Extract just the x rotation angle. Vector3 controllerForward = rotation * Vector3.forward; xAngle = 90.0f - Vector3.Angle(controllerForward, Vector3.up); // Remove the z rotation from the controller. xyRotation = Quaternion.FromToRotation(Vector3.forward, controllerForward); return true; } else { rotation = Quaternion.identity; xyRotation = Quaternion.identity; xAngle = 0.0f; return false; } } #if UNITY_EDITOR /// /// Editor only API to draw debug gizmos to help visualize the arm model /// public virtual void OnDrawGizmos() { if (!enabled) { return; } if (transform.parent == null) { return; } Vector3 worldShoulder = transform.parent.TransformPoint(shoulderPosition); Vector3 worldElbow = transform.parent.TransformPoint(elbowPosition); Vector3 worldwrist = transform.parent.TransformPoint(wristPosition); Vector3 worldcontroller = transform.parent.TransformPoint(controllerPosition); Gizmos.color = Color.red; Gizmos.DrawSphere(worldShoulder, 0.02f); Gizmos.DrawLine(worldShoulder, worldElbow); Gizmos.color = Color.green; Gizmos.DrawSphere(worldElbow, 0.02f); Gizmos.DrawLine(worldElbow, worldwrist); Gizmos.color = Color.cyan; Gizmos.DrawSphere(worldwrist, 0.02f); Gizmos.color = Color.blue; Gizmos.DrawSphere(worldcontroller, 0.02f); } #endif // UNITY_EDITOR } } #endif