federated-hierarchical4_main_fp16.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Python version: 3.6
  4. import os
  5. import copy
  6. import time
  7. import pickle
  8. import numpy as np
  9. from tqdm import tqdm
  10. import torch
  11. from tensorboardX import SummaryWriter
  12. from options import args_parser
  13. from update import LocalUpdate, test_inference
  14. from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
  15. from utils import get_dataset, average_weights, exp_details, set_device, build_model, fl_train
  16. import math
  17. import random
  18. if __name__ == '__main__':
  19. start_time = time.time()
  20. # define paths
  21. path_project = os.path.abspath('..')
  22. logger = SummaryWriter('../logs')
  23. args = args_parser()
  24. exp_details(args)
  25. # Select CPU or GPU
  26. device = set_device(args)
  27. # load dataset and user groups
  28. train_dataset, test_dataset, user_groupsold = get_dataset(args)
  29. # user_groups = user_groupsold
  30. # keylist = list(user_groups.keys())
  31. # ======= Shuffle dataset =======
  32. keys = list(user_groupsold.keys())
  33. random.shuffle(keys)
  34. user_groups = dict()
  35. for key in keys:
  36. user_groups.update({key:user_groupsold[key]})
  37. # print(user_groups.keys())
  38. keylist = list(user_groups.keys())
  39. print("keylist: ", keylist)
  40. # ======= Splitting into clusters. FL groups =======
  41. if args.num_clusters != 4:
  42. exit("Confirm that the number of clusters is 4?")
  43. cluster_size = int(args.num_users / args.num_clusters)
  44. # cluster_size = 50
  45. print("Each cluster size: ", cluster_size)
  46. # Cluster 1
  47. A1 = keylist[:cluster_size]
  48. # A1 = np.random.choice(keylist, cluster_size, replace=False)
  49. print("A1: ", A1)
  50. user_groupsA = {k:user_groups[k] for k in A1 if k in user_groups}
  51. print("Size of cluster 1: ", len(user_groupsA))
  52. # Cluster 2
  53. B1 = keylist[cluster_size:2*cluster_size]
  54. # B1 = np.random.choice(keylist, cluster_size, replace=False)
  55. print("B1: ", B1)
  56. user_groupsB = {k:user_groups[k] for k in B1 if k in user_groups}
  57. print("Size of cluster 2: ", len(user_groupsB))
  58. # Cluster 3
  59. C1 = keylist[2*cluster_size:3*cluster_size]
  60. # C1 = np.random.choice(keylist, cluster_size, replace=False)
  61. print("C1: ", C1)
  62. user_groupsC = {k:user_groups[k] for k in C1 if k in user_groups}
  63. print("Size of cluster 3: ", len(user_groupsC))
  64. # Cluster 4
  65. D1 = keylist[3*cluster_size:4*cluster_size]
  66. # D1 = np.random.choice(keylist, cluster_size, replace=False)
  67. print("D1: ", D1)
  68. user_groupsD = {k:user_groups[k] for k in D1 if k in user_groups}
  69. print("Size of cluster 4: ", len(user_groupsD))
  70. # MODEL PARAM SUMMARY
  71. global_model = build_model(args, train_dataset)
  72. pytorch_total_params = sum(p.numel() for p in global_model.parameters())
  73. print("Model total number of parameters: ", pytorch_total_params)
  74. # from torchsummary import summary
  75. # summary(global_model, (1, 28, 28))
  76. # global_model.parameters()
  77. # Set the model to train and send it to device.
  78. global_model.to(device)
  79. # Set model to use Floating Point 16
  80. global_model.to(dtype=torch.float16) ##########################
  81. global_model.train()
  82. print(global_model)
  83. # copy weights
  84. global_weights = global_model.state_dict()
  85. # ======= Set the cluster models to train and send it to device. =======
  86. # Cluster A
  87. cluster_modelA = build_model(args, train_dataset)
  88. cluster_modelA.to(device)
  89. cluster_modelA.to(dtype=torch.float16)
  90. cluster_modelA.train()
  91. # copy weights
  92. cluster_modelA_weights = cluster_modelA.state_dict()
  93. # Cluster B
  94. cluster_modelB = build_model(args, train_dataset)
  95. cluster_modelB.to(device)
  96. cluster_modelB.to(dtype=torch.float16)
  97. cluster_modelB.train()
  98. cluster_modelB_weights = cluster_modelB.state_dict()
  99. # Cluster C
  100. cluster_modelC = build_model(args, train_dataset)
  101. cluster_modelC.to(device)
  102. cluster_modelC.to(dtype=torch.float16)
  103. cluster_modelC.train()
  104. cluster_modelC_weights = cluster_modelC.state_dict()
  105. # Cluster D
  106. cluster_modelD = build_model(args, train_dataset)
  107. cluster_modelD.to(device)
  108. cluster_modelD.to(dtype=torch.float16)
  109. cluster_modelD.train()
  110. cluster_modelD_weights = cluster_modelD.state_dict()
  111. train_loss, train_accuracy = [], []
  112. val_acc_list, net_list = [], []
  113. cv_loss, cv_acc = [], []
  114. print_every = 1
  115. val_loss_pre, counter = 0, 0
  116. testacc_check, epoch = 0, 0
  117. idx = np.random.randint(0,99)
  118. # for epoch in tqdm(range(args.epochs)):
  119. for epoch in range(args.epochs):
  120. # while testacc_check < args.test_acc or epoch < args.epochs:
  121. # while epoch < args.epochs:
  122. local_weights, local_losses, local_accuracies= [], [], []
  123. print(f'\n | Global Training Round : {epoch+1} |\n')
  124. # ============== TRAIN ==============
  125. global_model.train()
  126. # ===== Cluster A =====
  127. _, A_weights, A_losses = fl_train(args, train_dataset, cluster_modelA, A1, user_groupsA, args.Cepochs, logger, cluster_dtype=torch.float16)
  128. local_weights.append(copy.deepcopy(A_weights))
  129. local_losses.append(copy.deepcopy(A_losses))
  130. cluster_modelA = global_model #= A_model
  131. # ===== Cluster B =====
  132. B_model, B_weights, B_losses = fl_train(args, train_dataset, cluster_modelB, B1, user_groupsB, args.Cepochs, logger, cluster_dtype=torch.float16)
  133. local_weights.append(copy.deepcopy(B_weights))
  134. local_losses.append(copy.deepcopy(B_losses))
  135. cluster_modelB = global_model #= B_model
  136. # ===== Cluster C =====
  137. C_model, C_weights, C_losses = fl_train(args, train_dataset, cluster_modelC, C1, user_groupsC, args.Cepochs, logger, cluster_dtype=torch.float16)
  138. local_weights.append(copy.deepcopy(C_weights))
  139. local_losses.append(copy.deepcopy(C_losses))
  140. cluster_modelC = global_model #= C_model
  141. # ===== Cluster D =====
  142. D_model, D_weights, D_losses = fl_train(args, train_dataset, cluster_modelD, D1, user_groupsD, args.Cepochs, logger, cluster_dtype=torch.float16)
  143. local_weights.append(copy.deepcopy(D_weights))
  144. local_losses.append(copy.deepcopy(D_losses))
  145. cluster_modelD= global_model #= D_model
  146. # averaging global weights
  147. global_weights = average_weights(local_weights)
  148. # update global weights
  149. global_model.load_state_dict(global_weights)
  150. loss_avg = sum(local_losses) / len(local_losses)
  151. train_loss.append(loss_avg)
  152. # ============== EVAL ==============
  153. # Calculate avg training accuracy over all users at every epoch
  154. list_acc, list_loss = [], []
  155. global_model.eval()
  156. # print("========== idx ========== ", idx)
  157. for c in range(args.num_users):
  158. # for c in range(cluster_size):
  159. # C = np.random.choice(keylist, int(args.frac * args.num_users), replace=False) # random set of clients
  160. # print("C: ", C)
  161. # for c in C:
  162. local_model = LocalUpdate(args=args, dataset=train_dataset,
  163. idxs=user_groups[c], logger=logger)
  164. acc, loss = local_model.inference(model=global_model, dtype=torch.float16)
  165. list_acc.append(acc)
  166. list_loss.append(loss)
  167. train_accuracy.append(sum(list_acc)/len(list_acc))
  168. # Add
  169. testacc_check = 100*train_accuracy[-1]
  170. epoch = epoch + 1
  171. # print global training loss after every 'i' rounds
  172. if (epoch+1) % print_every == 0:
  173. print(f' \nAvg Training Stats after {epoch+1} global rounds:')
  174. print(f'Training Loss : {np.mean(np.array(train_loss))}')
  175. print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))
  176. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))
  177. # Test inference after completion of training
  178. test_acc, test_loss = test_inference(args, global_model, test_dataset, dtype=torch.float16)
  179. # print(f' \n Results after {args.epochs} global rounds of training:')
  180. print(f"\nAvg Training Stats after {epoch} global rounds:")
  181. print("|---- Avg Train Accuracy: {:.2f}%".format(100*train_accuracy[-1]))
  182. print("|---- Test Accuracy: {:.2f}%".format(100*test_acc))
  183. # Saving the objects train_loss and train_accuracy:
  184. file_name = '../save/objects_fp16/HFL4_{}_{}_{}_lr[{}]_C[{}]_iid[{}]_E[{}]_B[{}]_FP16.pkl'.\
  185. format(args.dataset, args.model, epoch, args.lr, args.frac, args.iid,
  186. args.local_ep, args.local_bs)
  187. with open(file_name, 'wb') as f:
  188. pickle.dump([train_loss, train_accuracy], f)
  189. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))