federated-hierarchical2_main_fp16.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Python version: 3.6
  4. import os
  5. import copy
  6. import time
  7. import pickle
  8. import numpy as np
  9. from tqdm import tqdm
  10. import torch
  11. from tensorboardX import SummaryWriter
  12. from options import args_parser
  13. from update import LocalUpdate, test_inference
  14. from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
  15. from utils import get_dataset, average_weights, exp_details, set_device, build_model, fl_train
  16. import math
  17. import random
  18. if __name__ == '__main__':
  19. start_time = time.time()
  20. # define paths
  21. path_project = os.path.abspath('..')
  22. logger = SummaryWriter('../logs')
  23. args = args_parser()
  24. exp_details(args)
  25. # Select CPU or GPU
  26. device = set_device(args)
  27. # load dataset and user groups
  28. train_dataset, test_dataset, user_groupsold = get_dataset(args)
  29. # user_groups = user_groupsold
  30. # keylist = list(user_groups.keys())
  31. # ======= Shuffle dataset =======
  32. keys = list(user_groupsold.keys())
  33. random.shuffle(keys)
  34. user_groups = dict()
  35. for key in keys:
  36. user_groups.update({key:user_groupsold[key]})
  37. # print(user_groups.keys())
  38. keylist = list(user_groups.keys())
  39. print("keylist: ", keylist)
  40. # ======= Splitting into clusters. FL groups =======
  41. if args.num_clusters != 2:
  42. exit("Confirm that the number of clusters is 2?")
  43. cluster_size = int(args.num_users / args.num_clusters)
  44. # Cluster 1
  45. # A1 = np.arange(cluster_size, dtaype=int)
  46. A1 = keylist[:cluster_size]
  47. # A1 = np.random.choice(keylist, cluster_size, replace=False)
  48. print("A1: ", A1)
  49. user_groupsA = {k:user_groups[k] for k in A1 if k in user_groups}
  50. print("Size of cluster 1: ", len(user_groupsA))
  51. # Cluster 2
  52. # B1 = np.arange(cluster_size, cluster_size+cluster_size, dtype=int)
  53. B1 = keylist[cluster_size:2*cluster_size]
  54. # B1 = np.random.choice(keylist, cluster_size, replace=False)
  55. print("B1: ", B1)
  56. user_groupsB = {k:user_groups[k] for k in B1 if k in user_groups}
  57. print("Size of cluster 2: ", len(user_groupsB))
  58. # MODEL PARAM SUMMARY
  59. global_model = build_model(args, train_dataset)
  60. pytorch_total_params = sum(p.numel() for p in global_model.parameters())
  61. print("Model total number of parameters: ", pytorch_total_params)
  62. # from torchsummary import summary
  63. # summary(global_model, (1, 28, 28))
  64. # global_model.parameters()
  65. # Set the model to train and send it to device.
  66. global_model.to(device)
  67. # Set model to use Floating Point 16
  68. global_model.to(dtype=torch.float16) ##########################
  69. global_model.train()
  70. print(global_model)
  71. # copy weights
  72. global_weights = global_model.state_dict()
  73. # ======= Set the cluster models to train and send it to device. =======
  74. # Cluster A
  75. cluster_modelA = build_model(args, train_dataset)
  76. cluster_modelA.to(device)
  77. cluster_modelA.to(dtype=torch.float16) ######################
  78. cluster_modelA.train()
  79. # copy weights
  80. cluster_modelA_weights = cluster_modelA.state_dict()
  81. # Cluster B
  82. cluster_modelB = build_model(args, train_dataset)
  83. cluster_modelB.to(device)
  84. cluster_modelB.to(dtype=torch.float16) ######################
  85. cluster_modelB.train()
  86. # copy weights
  87. cluster_modelB_weights = cluster_modelB.state_dict()
  88. train_loss, train_accuracy = [], []
  89. val_acc_list, net_list = [], []
  90. cv_loss, cv_acc = [], []
  91. print_every = 1
  92. val_loss_pre, counter = 0, 0
  93. testacc_check, epoch = 0, 0
  94. # idx = np.random.randint(0,99)
  95. # for epoch in tqdm(range(args.epochs)):
  96. for epoch in range(args.epochs):
  97. # while testacc_check < args.test_acc or epoch < args.epochs:
  98. # while epoch < args.epochs:
  99. local_weights, local_losses, local_accuracies= [], [], []
  100. print(f'\n | Global Training Round : {epoch+1} |\n')
  101. # ============== TRAIN ==============
  102. global_model.train()
  103. # ===== Cluster A =====
  104. A_model, A_weights, A_losses = fl_train(args, train_dataset, cluster_modelA, A1, user_groupsA, args.Cepochs, logger, cluster_dtype=torch.float16)
  105. local_weights.append(copy.deepcopy(A_weights))
  106. local_losses.append(copy.deepcopy(A_losses))
  107. cluster_modelA = global_model# = A_model
  108. # ===== Cluster B =====
  109. B_model, B_weights, B_losses = fl_train(args, train_dataset, cluster_modelB, B1, user_groupsB, args.Cepochs, logger, cluster_dtype=torch.float16)
  110. local_weights.append(copy.deepcopy(B_weights))
  111. local_losses.append(copy.deepcopy(B_losses))
  112. cluster_modelB = global_model# = B_model
  113. # averaging global weights
  114. global_weights = average_weights(local_weights)
  115. # update global weights
  116. global_model.load_state_dict(global_weights)
  117. loss_avg = sum(local_losses) / len(local_losses)
  118. train_loss.append(loss_avg)
  119. # ============== EVAL ==============
  120. # Calculate avg training accuracy over all users at every epoch
  121. list_acc, list_loss = [], []
  122. global_model.eval()
  123. # print("========== idx ========== ", idx)
  124. for c in range(args.num_users):
  125. # for c in range(cluster_size):
  126. # C = np.random.choice(keylist, int(args.frac * args.num_users), replace=False) # random set of clients
  127. # print("C: ", C)
  128. # for c in C:
  129. local_model = LocalUpdate(args=args, dataset=train_dataset,
  130. idxs=user_groups[c], logger=logger)
  131. acc, loss = local_model.inference(model=global_model, dtype=torch.float16)
  132. list_acc.append(acc)
  133. list_loss.append(loss)
  134. train_accuracy.append(sum(list_acc)/len(list_acc))
  135. # Add
  136. testacc_check = 100*train_accuracy[-1]
  137. epoch = epoch + 1
  138. # print global training loss after every 'i' rounds
  139. if (epoch+1) % print_every == 0:
  140. print(f' \nAvg Training Stats after {epoch+1} global rounds:')
  141. print(f'Training Loss : {np.mean(np.array(train_loss))}')
  142. print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))
  143. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))
  144. # Test inference after completion of training
  145. test_acc, test_loss = test_inference(args, global_model, test_dataset, dtype=torch.float16)
  146. # print(f' \n Results after {args.epochs} global rounds of training:')
  147. print(f"\nAvg Training Stats after {epoch} global rounds:")
  148. print("|---- Avg Train Accuracy: {:.2f}%".format(100*train_accuracy[-1]))
  149. print("|---- Test Accuracy: {:.2f}%".format(100*test_acc))
  150. # Saving the objects train_loss and train_accuracy:
  151. file_name = '../save/objects_fp16/HFL2_{}_{}_{}_lr[{}]_C[{}]_iid[{}]_E[{}]_B[{}]_FP16.pkl'.\
  152. format(args.dataset, args.model, epoch, args.lr, args.frac, args.iid,
  153. args.local_ep, args.local_bs)
  154. with open(file_name, 'wb') as f:
  155. pickle.dump([train_loss, train_accuracy], f)
  156. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))