federated-hierarchical2_main.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Python version: 3.6
  4. import os
  5. import copy
  6. import time
  7. import pickle
  8. import numpy as np
  9. from tqdm import tqdm
  10. import torch
  11. from tensorboardX import SummaryWriter
  12. from options import args_parser
  13. from update import LocalUpdate, test_inference
  14. from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
  15. from utils import get_dataset, average_weights, exp_details, set_device, build_model, fl_train
  16. import math
  17. import random
  18. if __name__ == '__main__':
  19. start_time = time.time()
  20. # define paths
  21. path_project = os.path.abspath('..')
  22. logger = SummaryWriter('../logs')
  23. args = args_parser()
  24. exp_details(args)
  25. # Select CPU or GPU
  26. device = set_device(args)
  27. # load dataset and user groups
  28. train_dataset, test_dataset, user_groupsold = get_dataset(args)
  29. # user_groups = user_groupsold
  30. # keylist = list(user_groups.keys())
  31. # ======= Shuffle dataset =======
  32. keys = list(user_groupsold.keys())
  33. random.shuffle(keys)
  34. user_groups = dict()
  35. for key in keys:
  36. user_groups.update({key:user_groupsold[key]})
  37. # print(user_groups.keys())
  38. keylist = list(user_groups.keys())
  39. print("keylist: ", keylist)
  40. # ======= Splitting into clusters. FL groups =======
  41. cluster_size = int(args.num_users / args.num_clusters)
  42. # cluster_size = 50
  43. # print("Each cluster size: ", cluster_size)
  44. # Cluster 1
  45. # A1 = np.arange(cluster_size, dtaype=int)
  46. A1 = keylist[:cluster_size]
  47. # A1 = np.random.choice(keylist, cluster_size, replace=False)
  48. print("A1: ", A1)
  49. user_groupsA = {k:user_groups[k] for k in A1 if k in user_groups}
  50. print("Size of cluster 1: ", len(user_groupsA))
  51. # Cluster 2
  52. # B1 = np.arange(cluster_size, cluster_size+cluster_size, dtype=int)
  53. B1 = keylist[cluster_size:2*cluster_size]
  54. # B1 = np.random.choice(keylist, cluster_size, replace=False)
  55. print("B1: ", B1)
  56. user_groupsB = {k:user_groups[k] for k in B1 if k in user_groups}
  57. print("Size of cluster 2: ", len(user_groupsB))
  58. # MODEL PARAM SUMMARY
  59. global_model = build_model(args, train_dataset)
  60. pytorch_total_params = sum(p.numel() for p in global_model.parameters())
  61. print("Model total number of parameters: ", pytorch_total_params)
  62. # from torchsummary import summary
  63. # summary(global_model, (1, 28, 28))
  64. # global_model.parameters()
  65. # Set the model to train and send it to device.
  66. global_model.to(device)
  67. global_model.train()
  68. print(global_model)
  69. # copy weights
  70. global_weights = global_model.state_dict()
  71. # ======= Set the cluster models to train and send it to device. =======
  72. # Cluster A
  73. cluster_modelA = build_model(args, train_dataset)
  74. cluster_modelA.to(device)
  75. cluster_modelA.train()
  76. # copy weights
  77. cluster_modelA_weights = cluster_modelA.state_dict()
  78. # Cluster B
  79. cluster_modelB = build_model(args, train_dataset)
  80. cluster_modelB.to(device)
  81. cluster_modelB.train()
  82. # copy weights
  83. cluster_modelB_weights = cluster_modelB.state_dict()
  84. train_loss, train_accuracy = [], []
  85. val_acc_list, net_list = [], []
  86. cv_loss, cv_acc = [], []
  87. print_every = 1
  88. val_loss_pre, counter = 0, 0
  89. testacc_check, epoch = 0, 0
  90. # idx = np.random.randint(0,99)
  91. # for epoch in tqdm(range(args.epochs)):
  92. for epoch in range(args.epochs):
  93. # while testacc_check < args.test_acc or epoch < args.epochs:
  94. # while epoch < args.epochs:
  95. local_weights, local_losses, local_accuracies= [], [], []
  96. print(f'\n | Global Training Round : {epoch+1} |\n')
  97. # ============== TRAIN ==============
  98. global_model.train()
  99. # ===== Cluster A =====
  100. A_model, A_weights, A_losses = fl_train(args, train_dataset, cluster_modelA, A1, user_groupsA, args.Cepochs, logger)
  101. local_weights.append(copy.deepcopy(A_weights))
  102. local_losses.append(copy.deepcopy(A_losses))
  103. cluster_modelA = global_model# = A_model
  104. # ===== Cluster B =====
  105. B_model, B_weights, B_losses = fl_train(args, train_dataset, cluster_modelB, B1, user_groupsB, args.Cepochs, logger)
  106. local_weights.append(copy.deepcopy(B_weights))
  107. local_losses.append(copy.deepcopy(B_losses))
  108. cluster_modelB = global_model# = B_model
  109. # averaging global weights
  110. global_weights = average_weights(local_weights)
  111. # update global weights
  112. global_model.load_state_dict(global_weights)
  113. loss_avg = sum(local_losses) / len(local_losses)
  114. train_loss.append(loss_avg)
  115. # ============== EVAL ==============
  116. # Calculate avg training accuracy over all users at every epoch
  117. list_acc, list_loss = [], []
  118. global_model.eval()
  119. # print("========== idx ========== ", idx)
  120. for c in range(args.num_users):
  121. # for c in range(cluster_size):
  122. # C = np.random.choice(keylist, int(args.frac * args.num_users), replace=False) # random set of clients
  123. # print("C: ", C)
  124. # for c in C:
  125. local_model = LocalUpdate(args=args, dataset=train_dataset,
  126. idxs=user_groups[c], logger=logger)
  127. acc, loss = local_model.inference(model=global_model)
  128. list_acc.append(acc)
  129. list_loss.append(loss)
  130. train_accuracy.append(sum(list_acc)/len(list_acc))
  131. # Add
  132. testacc_check = 100*train_accuracy[-1]
  133. epoch = epoch + 1
  134. # print global training loss after every 'i' rounds
  135. if (epoch+1) % print_every == 0:
  136. print(f' \nAvg Training Stats after {epoch+1} global rounds:')
  137. print(f'Training Loss : {np.mean(np.array(train_loss))}')
  138. print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))
  139. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))
  140. # Test inference after completion of training
  141. test_acc, test_loss = test_inference(args, global_model, test_dataset)
  142. # print(f' \n Results after {args.epochs} global rounds of training:')
  143. print(f"\nAvg Training Stats after {epoch} global rounds:")
  144. print("|---- Avg Train Accuracy: {:.2f}%".format(100*train_accuracy[-1]))
  145. print("|---- Test Accuracy: {:.2f}%".format(100*test_acc))
  146. # Saving the objects train_loss and train_accuracy:
  147. file_name = '../save/objects/HFL2_{}_{}_{}_lr[{}]_C[{}]_iid[{}]_E[{}]_B[{}].pkl'.\
  148. format(args.dataset, args.model, epoch, args.lr, args.frac, args.iid,
  149. args.local_ep, args.local_bs)
  150. with open(file_name, 'wb') as f:
  151. pickle.dump([train_loss, train_accuracy], f)