federated-hierarchical_main.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Python version: 3.6
  4. import os
  5. import copy
  6. import time
  7. import pickle
  8. import numpy as np
  9. from tqdm import tqdm
  10. import torch
  11. from tensorboardX import SummaryWriter
  12. from options import args_parser
  13. from update import LocalUpdate, test_inference
  14. from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar
  15. from utils import get_dataset, average_weights, exp_details
  16. import math
  17. import random
  18. # BUILD MODEL
  19. def build_model(args, train_dataset):
  20. if args.model == 'cnn':
  21. # Convolutional neural network
  22. if args.dataset == 'mnist':
  23. global_model = CNNMnist(args=args)
  24. elif args.dataset == 'fmnist':
  25. global_model = CNNFashion_Mnist(args=args)
  26. elif args.dataset == 'cifar':
  27. global_model = CNNCifar(args=args)
  28. elif args.model == 'mlp':
  29. # Multi-layer preceptron
  30. img_size = train_dataset[0][0].shape
  31. len_in = 1
  32. for x in img_size:
  33. len_in *= x
  34. global_model = MLP(dim_in=len_in, dim_hidden=64,
  35. dim_out=args.num_classes)
  36. else:
  37. exit('Error: unrecognized model')
  38. return global_model
  39. # Defining the training function
  40. def fl_train(args, train_dataset, cluster_global_model, cluster, usergrp, epochs):
  41. cluster_train_loss, cluster_train_acc = [], []
  42. cluster_val_acc_list, cluster_net_list = [], []
  43. cluster_cv_loss, cluster_cv_acc = [], []
  44. # print_every = 1
  45. cluster_val_loss_pre, counter = 0, 0
  46. for epoch in range(epochs):
  47. cluster_local_weights, cluster_local_losses = [], []
  48. # print(f'\n | Cluster Training Round : {epoch+1} |\n')
  49. cluster_global_model.train()
  50. # m = max(int(args.frac * len(cluster)), 1)
  51. m = max(int(math.ceil(args.frac * len(cluster))), 1)
  52. idxs_users = np.random.choice(cluster, m, replace=False)
  53. for idx in idxs_users:
  54. cluster_local_model = LocalUpdate(args=args, dataset=train_dataset, idxs=usergrp[idx], logger=logger)
  55. cluster_w, cluster_loss = cluster_local_model.update_weights(model=copy.deepcopy(cluster_global_model), global_round=epoch)
  56. cluster_local_weights.append(copy.deepcopy(cluster_w))
  57. cluster_local_losses.append(copy.deepcopy(cluster_loss))
  58. # print('| Global Round : {} | User : {} | \tLoss: {:.6f}'.format(epoch, idx, cluster_loss))
  59. # averaging global weights
  60. cluster_global_weights = average_weights(cluster_local_weights)
  61. # update global weights
  62. cluster_global_model.load_state_dict(cluster_global_weights)
  63. cluster_loss_avg = sum(cluster_local_losses) / len(cluster_local_losses)
  64. cluster_train_loss.append(cluster_loss_avg)
  65. # ============== EVAL ==============
  66. # Calculate avg training accuracy over all users at every epoch
  67. list_acc, list_loss = [], []
  68. cluster_global_model.eval()
  69. for c in range(len(cluster)):
  70. # local_model = LocalUpdate(args=args, dataset=train_dataset,
  71. # idxs=user_groups[c], logger=logger)
  72. local_model = LocalUpdate(args=args, dataset=train_dataset,
  73. idxs=user_groups[idx], logger=logger)
  74. acc, loss = local_model.inference(model=global_model)
  75. list_acc.append(acc)
  76. list_loss.append(loss)
  77. cluster_train_acc.append(sum(list_acc)/len(list_acc))
  78. # Add
  79. print("Cluster accuracy: ", 100*cluster_train_acc[-1])
  80. return cluster_global_model, cluster_global_weights, cluster_loss_avg
  81. if __name__ == '__main__':
  82. start_time = time.time()
  83. # define paths
  84. path_project = os.path.abspath('..')
  85. logger = SummaryWriter('../logs')
  86. args = args_parser()
  87. exp_details(args)
  88. if args.gpu:
  89. torch.cuda.set_device(args.gpu)
  90. device = 'cuda' if args.gpu else 'cpu'
  91. # load dataset and user groups
  92. train_dataset, test_dataset, user_groupsold = get_dataset(args)
  93. # ======= Shuffle dataset =======
  94. keys = list(user_groupsold.keys())
  95. random.shuffle(keys)
  96. user_groups = dict()
  97. for key in keys:
  98. user_groups.update({key:user_groupsold[key]})
  99. # print(user_groups.keys())
  100. keylist = list(user_groups.keys())
  101. print("keylist: ", keylist)
  102. # ======= Splitting into clusters. FL groups =======
  103. cluster_size = int(args.num_users / args.num_clusters)
  104. print("Each cluster size: ", cluster_size)
  105. # Cluster 1
  106. # A1 = np.arange(cluster_size, dtaype=int)
  107. A1 = keylist[:cluster_size]
  108. print("A1: ", A1)
  109. user_groupsA = {k:user_groups[k] for k in A1 if k in user_groups}
  110. print("Size of cluster 1: ", len(user_groupsA))
  111. # Cluster 2
  112. # B1 = np.arange(cluster_size, cluster_size+cluster_size, dtype=int)
  113. B1 = keylist[cluster_size:2*cluster_size]
  114. print("B1: ", B1)
  115. user_groupsB = {k:user_groups[k] for k in B1 if k in user_groups}
  116. print("Size of cluster 2: ", len(user_groupsB))
  117. # # Cluster 3
  118. # C1 = np.arange(2*cluster_size, 3*cluster_size, dtype=int)
  119. # user_groupsC = {k:user_groups[k] for k in C1 if k in user_groups}
  120. # print("Size of cluster 3: ", len(user_groupsC))
  121. # # Cluster 4
  122. # D1 = np.arange(3*cluster_size, 4*cluster_size, dtype=int)
  123. # user_groupsD = {k:user_groups[k] for k in D1 if k in user_groups}
  124. # print("Size of cluster 4: ", len(user_groupsD))
  125. # MODEL PARAM SUMMARY
  126. global_model = build_model(args, train_dataset)
  127. pytorch_total_params = sum(p.numel() for p in global_model.parameters())
  128. print("Model total number of parameters: ", pytorch_total_params)
  129. # from torchsummary import summary
  130. # summary(global_model, (1, 28, 28))
  131. # global_model.parameters()
  132. # Set the model to train and send it to device.
  133. global_model.to(device)
  134. global_model.train()
  135. print(global_model)
  136. # copy weights
  137. global_weights = global_model.state_dict()
  138. # ======= Set the cluster models to train and send it to device. =======
  139. # Cluster A
  140. cluster_modelA = build_model(args, train_dataset)
  141. cluster_modelA.to(device)
  142. cluster_modelA.train()
  143. # copy weights
  144. cluster_modelA_weights = cluster_modelA.state_dict()
  145. # Cluster B
  146. cluster_modelB = build_model(args, train_dataset)
  147. cluster_modelB.to(device)
  148. cluster_modelB.train()
  149. # copy weights
  150. cluster_modelB_weights = cluster_modelB.state_dict()
  151. # # Cluster C
  152. # cluster_modelC = build_model(args, train_dataset)
  153. # cluster_modelC.to(device)
  154. # cluster_modelC.train()
  155. # # copy weights
  156. # cluster_modelC_weights = cluster_modelC.state_dict()
  157. # # Cluster D
  158. # cluster_modelD = build_model(args, train_dataset)
  159. # cluster_modelD.to(device)
  160. # cluster_modelD.train()
  161. # # copy weights
  162. # cluster_modelD_weights = cluster_modelD.state_dict()
  163. train_loss, train_accuracy = [], []
  164. val_acc_list, net_list = [], []
  165. cv_loss, cv_acc = [], []
  166. print_every = 1
  167. val_loss_pre, counter = 0, 0
  168. testacc_check, epoch, idx = 0, 0, 0
  169. for epoch in tqdm(range(args.epochs)):
  170. # while testacc_check < args.test_acc:
  171. local_weights, local_losses, local_accuracies= [], [], []
  172. print(f'\n | Global Training Round : {epoch+1} |\n')
  173. # ============== TRAIN ==============
  174. global_model.train()
  175. # Cluster A
  176. A_model, A_weights, A_losses = fl_train(args, train_dataset, cluster_modelA, A1, user_groupsA, args.Cepochs)
  177. local_weights.append(copy.deepcopy(A_weights))
  178. local_losses.append(copy.deepcopy(A_losses))
  179. cluster_modelA = A_model
  180. # Cluster B
  181. B_model, B_weights, B_losses = fl_train(args, train_dataset, cluster_modelB, B1, user_groupsB, args.Cepochs)
  182. local_weights.append(copy.deepcopy(B_weights))
  183. local_losses.append(copy.deepcopy(B_losses))
  184. cluster_modelB = B_model
  185. # # Cluster C
  186. # C_weights, C_losses = fl_train(args, train_dataset, cluster_modelC, C1, user_groupsC, args.Cepochs)
  187. # local_weights.append(copy.deepcopy(C_weights))
  188. # local_losses.append(copy.deepcopy(C_losses))
  189. # # Cluster D
  190. # D_weights, D_losses = fl_train(args, train_dataset, cluster_modelD, D1, user_groupsD, args.Cepochs)
  191. # local_weights.append(copy.deepcopy(D_weights))
  192. # local_losses.append(copy.deepcopy(D_losses))
  193. # averaging global weights
  194. global_weights = average_weights(local_weights)
  195. # update global weights
  196. global_model.load_state_dict(global_weights)
  197. loss_avg = sum(local_losses) / len(local_losses)
  198. train_loss.append(loss_avg)
  199. # ============== EVAL ==============
  200. # Calculate avg training accuracy over all users at every epoch
  201. list_acc, list_loss = [], []
  202. global_model.eval()
  203. # print("========== idx ========== ", idx)
  204. for c in range(args.num_users):
  205. local_model = LocalUpdate(args=args, dataset=train_dataset,
  206. idxs=user_groups[idx], logger=logger)
  207. acc, loss = local_model.inference(model=global_model)
  208. list_acc.append(acc)
  209. list_loss.append(loss)
  210. train_accuracy.append(sum(list_acc)/len(list_acc))
  211. # Add
  212. testacc_check = 100*train_accuracy[-1]
  213. epoch = epoch + 1
  214. # print global training loss after every 'i' rounds
  215. if (epoch+1) % print_every == 0:
  216. print(f' \nAvg Training Stats after {epoch+1} global rounds:')
  217. print(f'Training Loss : {np.mean(np.array(train_loss))}')
  218. print('Train Accuracy: {:.2f}% \n'.format(100*train_accuracy[-1]))
  219. print('\n Total Run Time: {0:0.4f}'.format(time.time()-start_time))
  220. # Test inference after completion of training
  221. test_acc, test_loss = test_inference(args, global_model, test_dataset)
  222. # print(f' \n Results after {args.epochs} global rounds of training:')
  223. print(f"\nAvg Training Stats after {epoch} global rounds:")
  224. print("|---- Avg Train Accuracy: {:.2f}%".format(100*train_accuracy[-1]))
  225. print("|---- Test Accuracy: {:.2f}%".format(100*test_acc))
  226. # Saving the objects train_loss and train_accuracy:
  227. file_name = '../save/objects/HFL_{}_{}_{}_C[{}]_iid[{}]_E[{}]_B[{}].pkl'.\
  228. format(args.dataset, args.model, epoch, args.frac, args.iid,
  229. args.local_ep, args.local_bs)
  230. with open(file_name, 'wb') as f:
  231. pickle.dump([train_loss, train_accuracy], f)