import torch import torch.nn as nn import torch.nn.Functional as F # MLP Arch with 1 Hidden layer class MLP(nn.Module): def __init__(self, input_dim, hidden, out_dim): super(MLP, self).__init__() self.linear1 = nn.Linear(input_dim, hidden) self.linear2 = nn.Linear(hidden, out_dim) self.relu = nn.ReLU() self.dropout = nn.Dropout() self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x.view(-1, x.shape[1]*x.shape[-2]*x.shape[-1]) x = self.linear1(x) x = self.dropout(x) x = self.relu(x) x = self.linear2(x) return self.softmax(x) # CNN Arch for MNIST class CNN_Mnist(nn.Module): def __init__(self, args): super(CNN_Mnist, self).__init__() self.conv1 = nn.Conv2d(args.num_channels, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.dropout_2d = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, args.num_classes) def forward(self, x): x = F.max_pool2d(self.conv1(x), 2) x = F.relu(x) x = F.max_pool2d(nn.Dropout2d(self.conv2(x)), 2) x = F.relu(x) x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3]) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) # CNN Arch -- CIFAR class CNN_Cifar(nn.Module): def __init__(self, args): super(CNN_Cifar, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.view(-1, 16*5*5) # Dim of fc1 x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1)