#!/usr/bin/env python # -*- coding: utf-8 -*- # Python version: 3.6 import torch from torch import nn import torch.nn.functional as F class MLP(nn.Module): def __init__(self, dim_in, dim_hidden, dim_out): super(MLP, self).__init__() self.layer_input = nn.Linear(dim_in, dim_hidden) self.relu = nn.ReLU() self.dropout = nn.Dropout() self.layer_hidden = nn.Linear(dim_hidden, dim_out) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = x.view(-1, x.shape[1]*x.shape[-2]*x.shape[-1]) x = self.layer_input(x) x = self.dropout(x) x = self.relu(x) x = self.layer_hidden(x) return self.softmax(x) class CNNMnist(nn.Module): def __init__(self, args): super(CNNMnist, self).__init__() self.conv1 = nn.Conv2d(args.num_channels, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, args.num_classes) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3]) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) class CNNCifar(nn.Module): def __init__(self, args): super(CNNCifar, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1)