using System; using System.Collections.Generic; using System.Windows; using System.Linq; using System.Text; using System.Threading.Tasks; namespace SketchAssistantWPF { /// /// A class that contains all algorithms related to geometry. /// public static class GeometryCalculator { /// /// A simple algorithm that returns a filled circle with a radius and a center point. /// /// The center point of the alorithm /// The radius of the circle, if its less or equal to 1 /// only the center point is returned. /// All the points in or on the circle. public static HashSet FilledCircleAlgorithm(Point center, int radius) { HashSet returnSet = new HashSet { center }; //Fill the circle for (int x = 0; x < radius; x++) { for (int y = 0; y < radius; y++) { //Check if point is on or in the circle if ((x * x + y * y - radius * radius) <= 0) { returnSet.Add(new Point(center.X + x, center.Y + y)); returnSet.Add(new Point(center.X - x, center.Y + y)); returnSet.Add(new Point(center.X + x, center.Y - y)); returnSet.Add(new Point(center.X - x, center.Y - y)); } } } return returnSet; } /// /// An implementation of the Bresenham Line Algorithm, /// which calculates all points between two points in a straight line. /// Implemented using the pseudocode on Wikipedia. /// /// The start point /// The end point /// All points between p0 and p1 (including p0 and p1) public static List BresenhamLineAlgorithm(Point p0, Point p1) { int p1x = (int)p1.X; int p1y = (int)p1.Y; int p0x = (int)p0.X; int p0y = (int)p0.Y; int deltaX = p1x - p0x; int deltaY = p1y - p0y; List returnList; if (Math.Abs(deltaY) < Math.Abs(deltaX)) { if (p0.X > p1.X) { returnList = GetLineLow(p1x, p1y, p0x, p0y); returnList.Reverse(); } else { returnList = GetLineLow(p0x, p0y, p1x, p1y); } } else { if (p0.Y > p1.Y) { returnList = GetLineHigh(p1x, p1y, p0x, p0y); returnList.Reverse(); } else { returnList = GetLineHigh(p0x, p0y, p1x, p1y); } } return returnList; } /// /// Helping function of the Bresenham Line algorithm, /// under the assumption that abs(deltaY) is smaller than abs(deltX) /// and x0 is smaller than x1 /// /// x value of point 0 /// y value of point 0 /// x value of point 1 /// y value of point 1 /// All points on the line between the two points private static List GetLineLow(int x0, int y0, int x1, int y1) { List returnList = new List(); int dx = x1 - x0; int dy = y1 - y0; int yi = 1; if (dy < 0) { yi = -1; dy = -dy; } int D = 2 * dy - dx; int y = y0; for (int x = x0; x <= x1; x++) { returnList.Add(new Point(x, y)); if (D > 0) { y = y + yi; D = D - 2 * dx; } D = D + 2 * dy; } return returnList; } /// /// Helping function of the Bresenham Line algorithm, /// under the assumption that abs(deltaY) is larger or equal than abs(deltX) /// and y0 is smaller than y1 /// /// x value of point 0 /// y value of point 0 /// x value of point 1 /// y value of point 1 /// All points on the line between the two points private static List GetLineHigh(int x0, int y0, int x1, int y1) { List returnList = new List(); int dx = x1 - x0; int dy = y1 - y0; int xi = 1; if (dx < 0) { xi = -1; dx = -dx; } int D = 2 * dx - dy; int x = x0; for (int y = y0; y <= y1; y++) { returnList.Add(new Point(x, y)); if (D > 0) { x = x + xi; D = D - 2 * dy; } D = D + 2 * dx; } return returnList; } } }