using System; using System.Collections.Generic; using System.Windows; using System.Linq; using System.Text; using System.Threading.Tasks; namespace SketchAssistantWPF { /// /// A class that contains all algorithms related to geometry. /// public static class GeometryCalculator { /// /// Calculate the approximate similarity of two lines. /// Using three weighted parameters to calculate a value between 0 and 1 to indicate the similarity of the lines. /// /// The first line. /// The second line. /// The similarity of the two lines. public static double CalculateSimilarity(InternalLine l0, InternalLine l1) { double CosSim = Math.Abs(CalculateAverageCosineSimilarity(l0, l1)); double LenSim = CalculateLengthSimilarity(l0, l1); double AvDist = CalculateAverageDistance(l0, l1); double DistSim = (50 - AvDist) / 50; if (DistSim < 0) DistSim = 0; if (CosSim < 0.5) CosSim = 0; double output = (2 * CosSim + LenSim + DistSim) / 4; System.Diagnostics.Debug.WriteLine("Results: CosSim: {0}, LenSim: {1}, AvDist {2}, DistSim: {3}. Total: {4}", CosSim, LenSim, AvDist, DistSim, output); return output; } /// /// The cosine similarity of two vectors. /// /// The first vector /// The second vector /// The cosine similarity private static double CosineSimilarity(Vector v0, Vector v1) { return (v0.X * v1.X + v0.Y * v1.Y) / (Math.Sqrt(v0.X * v0.X + v0.Y * v0.Y) * Math.Sqrt(v1.X * v1.X + v1.Y * v1.Y)); } /// /// An approximate calculation of the average cosine similarity /// of two lines, achieved by calculating the cosine similarity of subvectors. /// /// The first line /// The second line /// The approximate average cosine similarity of all subvectors public static double CalculateAverageCosineSimilarity(InternalLine l0, InternalLine l1) { //check if one of the lines is a point, or both lines are points if ((l0.isPoint && !l1.isPoint) || (l1.isPoint && !l0.isPoint)) return 0; else if (l0.isPoint && l1.isPoint) return 1; List points0 = l0.GetPoints(); List points1 = l1.GetPoints(); if (points0.Count == points1.Count) { //If the two lists have an equal amount of subvectors, //compare the nth subvectors from each list and average the value. double sum = 0; int i = 0; List shortL = points0; List longL = points1; for (; i < shortL.Count - 1; i++) { if (i + 1 == shortL.Count || i + 1 == longL.Count) break; Vector v0 = new Vector(shortL[i + 1].X - shortL[i].X, shortL[i + 1].Y - shortL[i].Y); Vector v1 = new Vector(longL[i + 1].X - longL[i].X, longL[i + 1].Y - longL[i].Y); sum += CosineSimilarity(v0, v1); } return sum / i; } else { //Determine if the longer list is of similar length or contains significatly more items List shortL = points0; List longL = points0; if (points0.Count < points1.Count) { longL = points1; } if (points0.Count > points1.Count) { shortL = points1;} double dif = (longL.Count - 1) / (shortL.Count - 1); if(dif > 1) { //The longer list is significantly longer //Each element in the shorter list is compared to multiple // elements in the longer list to make up the difference double sum = 0; int adds = 0; for (int i = 0; i < shortL.Count - 1; i++) { if (i + 1 == shortL.Count) break; for (int j = 0; j <= dif; j++) { var k = i + j; if (k + 1 == longL.Count) break; Vector v0 = new Vector(shortL[i + 1].X - shortL[i].X, shortL[i + 1].Y - shortL[i].Y); Vector v1 = new Vector(longL[k + 1].X - longL[k].X, longL[k + 1].Y - longL[k].Y); sum += CosineSimilarity(v0, v1); adds++; } } return sum / adds; } else { //The longer list is almost the same length as the shorter list //The remaining items are simply skipped double sum = 0; int i = 0; for (; i < shortL.Count - 1; i++) { if (i + 1 == shortL.Count || i + 1 == longL.Count) break; Vector v0 = new Vector(shortL[i + 1].X - shortL[i].X, shortL[i + 1].Y - shortL[i].Y); Vector v1 = new Vector(longL[i + 1].X - longL[i].X, longL[i + 1].Y - longL[i].Y); sum += CosineSimilarity(v0, v1); } return sum / i; } } } /// /// Calculate the similarity in length of two Lines. /// /// The first line. /// The second line. /// How similar the lines are in length. private static double CalculateLengthSimilarity(InternalLine l0, InternalLine l1) { double len0 = l0.GetLength(); double len1 = l1.GetLength(); var dif = Math.Abs(len1 - len0); if (dif == 0) return 1; double shorter; if (len1 > len0) shorter = len0; else shorter = len1; if (dif >= shorter) return 0; return (shorter - dif )/shorter; } /// /// Calculate the average distance between the ends of two lines. /// /// The first line. /// The second line. /// The shortest average distance between the ends of the lines. private static double CalculateAverageDistance(InternalLine l0, InternalLine l1) { List points0 = l0.GetPoints(); List points1 = l1.GetPoints(); double distfirstfirst = Math.Sqrt(Math.Pow((points0[0].X - points1[0].X) , 2) + Math.Pow((points0[0].Y - points1[0].Y) , 2)); double distlastlast = Math.Sqrt(Math.Pow((points0.Last().X - points1.Last().X), 2) + Math.Pow((points0.Last().Y - points1.Last().Y), 2)); double distfirstlast = Math.Sqrt(Math.Pow((points0[0].X - points1.Last().X), 2) + Math.Pow((points0[0].Y - points1.Last().Y), 2)); double distlastfirst = Math.Sqrt(Math.Pow((points0.Last().X - points1[0].X), 2) + Math.Pow((points0.Last().Y - points1[0].Y), 2)); if ((distfirstfirst + distlastlast) / 2 < (distfirstlast + distlastfirst) / 2) return (distfirstfirst + distlastlast) / 2; else return (distfirstlast + distlastfirst) / 2; } /// /// A simple algorithm that returns a filled circle with a radius and a center point. /// /// The center point of the alorithm /// The radius of the circle, if its less or equal to 1 /// only the center point is returned. /// All the points in or on the circle. public static HashSet FilledCircleAlgorithm(Point center, int radius) { HashSet returnSet = new HashSet { center }; //Fill the circle for (int x = 0; x < radius; x++) { for (int y = 0; y < radius; y++) { //Check if point is on or in the circle if ((x * x + y * y - radius * radius) <= 0) { returnSet.Add(new Point(center.X + x, center.Y + y)); returnSet.Add(new Point(center.X - x, center.Y + y)); returnSet.Add(new Point(center.X + x, center.Y - y)); returnSet.Add(new Point(center.X - x, center.Y - y)); } } } return returnSet; } /// /// An implementation of the Bresenham Line Algorithm, /// which calculates all points between two points in a straight line. /// Implemented using the pseudocode on Wikipedia. /// /// The start point /// The end point /// All points between p0 and p1 (including p0 and p1) public static List BresenhamLineAlgorithm(Point p0, Point p1) { int p1x = (int)p1.X; int p1y = (int)p1.Y; int p0x = (int)p0.X; int p0y = (int)p0.Y; int deltaX = p1x - p0x; int deltaY = p1y - p0y; List returnList; if (Math.Abs(deltaY) < Math.Abs(deltaX)) { if (p0.X > p1.X) { returnList = GetLineLow(p1x, p1y, p0x, p0y); returnList.Reverse(); } else { returnList = GetLineLow(p0x, p0y, p1x, p1y); } } else { if (p0.Y > p1.Y) { returnList = GetLineHigh(p1x, p1y, p0x, p0y); returnList.Reverse(); } else { returnList = GetLineHigh(p0x, p0y, p1x, p1y); } } return returnList; } /// /// Helping function of the Bresenham Line algorithm, /// under the assumption that abs(deltaY) is smaller than abs(deltX) /// and x0 is smaller than x1 /// /// x value of point 0 /// y value of point 0 /// x value of point 1 /// y value of point 1 /// All points on the line between the two points private static List GetLineLow(int x0, int y0, int x1, int y1) { List returnList = new List(); int dx = x1 - x0; int dy = y1 - y0; int yi = 1; if (dy < 0) { yi = -1; dy = -dy; } int D = 2 * dy - dx; int y = y0; for (int x = x0; x <= x1; x++) { returnList.Add(new Point(x, y)); if (D > 0) { y = y + yi; D = D - 2 * dx; } D = D + 2 * dy; } return returnList; } /// /// Helping function of the Bresenham Line algorithm, /// under the assumption that abs(deltaY) is larger or equal than abs(deltX) /// and y0 is smaller than y1 /// /// x value of point 0 /// y value of point 0 /// x value of point 1 /// y value of point 1 /// All points on the line between the two points private static List GetLineHigh(int x0, int y0, int x1, int y1) { List returnList = new List(); int dx = x1 - x0; int dy = y1 - y0; int xi = 1; if (dx < 0) { xi = -1; dx = -dx; } int D = 2 * dx - dy; int x = x0; for (int y = y0; y <= y1; y++) { returnList.Add(new Point(x, y)); if (D > 0) { x = x + xi; D = D - 2 * dy; } D = D + 2 * dx; } return returnList; } } }