123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- #include <stdio.h>
- #include <stdlib.h>
- #include <stdint.h>
- #include <string.h>
- #include <errno.h>
- #include <assert.h>
- #include <sys/socket.h>
- #include <netinet/in.h>
- #include <arpa/inet.h>
- #include "../lib/constraint.h"
- #include "../lib/logger.h"
- #include "../lib/xalloc.h"
- //
- // Efficient address-space constraints (AH 7/2013)
- //
- // This module uses a tree-based representation to efficiently
- // manipulate and query constraints on the address space to be
- // scanned. It provides a value for every IP address, and these
- // values are applied by setting them for network prefixes. Order
- // matters: setting a value replaces any existing value for that
- // prefix or subsets of it. We use this to implement network
- // whitelisting and blacklisting.
- //
- // Think of setting values in this structure like painting
- // subnets with different colors. We can paint subnets black to
- // exclude them and white to allow them. Only the top color shows.
- // This makes for potentially very powerful constraint specifications.
- //
- // Internally, this is implemented using a binary tree, where each
- // node corresponds to a network prefix. (E.g., the root is
- // 0.0.0.0/0, and its children, if present, are 0.0.0.0/1 and
- // 128.0.0.0/1.) Each leaf of the tree stores the value that applies
- // to every address within the leaf's portion of the prefix space.
- //
- // As an optimization, after all values are set, we look up the
- // value or subtree for every /16 prefix and cache them as an array.
- // This lets subsequent lookups bypass the bottom half of the tree.
- //
- /*
- * Constraint Copyright 2013 Regents of the University of Michigan
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may not
- * use this file except in compliance with the License. You may obtain a copy
- * of the License at http://www.apache.org/licenses/LICENSE-2.0
- */
- typedef struct node {
- struct node *l;
- struct node *r;
- value_t value;
- uint64_t count;
- } node_t;
- // As an optimization, we precompute lookups for every prefix of this
- // length:
- #define RADIX_LENGTH 20
- struct _constraint {
- node_t *root; // root node of the tree
- uint32_t *radix; // array of prefixes (/RADIX_LENGTH) that are painted paint_value
- size_t radix_len; // number of prefixes in radix array
- int painted; // have we precomputed counts for each node?
- value_t paint_value; // value for which we precomputed counts
- };
- // Tree operations respect the invariant that every node that isn't a
- // leaf has exactly two children.
- #define IS_LEAF(node) ((node)->l == NULL)
- // Allocate a new leaf with the given value
- static node_t* _create_leaf(value_t value)
- {
- node_t *node = xmalloc(sizeof(node_t));
- node->l = NULL;
- node->r = NULL;
- node->value = value;
- return node;
- }
- // Free the subtree rooted at node.
- static void _destroy_subtree(node_t *node)
- {
- if (node == NULL)
- return;
- _destroy_subtree(node->l);
- _destroy_subtree(node->r);
- free(node);
- }
- // Convert from an internal node to a leaf.
- static void _convert_to_leaf(node_t *node)
- {
- assert(node);
- assert(!IS_LEAF(node));
- _destroy_subtree(node->l);
- _destroy_subtree(node->r);
- node->l = NULL;
- node->r = NULL;
- }
- // Recursive function to set value for a given network prefix within
- // the tree. (Note: prefix must be in host byte order.)
- static void _set_recurse(node_t *node, uint32_t prefix, int len, value_t value)
- {
- assert(node);
- assert(0 <= len && len <= 32);
- if (len == 0) {
- // We're at the end of the prefix; make this a leaf and set the value.
- if (!IS_LEAF(node)) {
- _convert_to_leaf(node);
- }
- node->value = value;
- return;
- }
- if (IS_LEAF(node)) {
- // We're not at the end of the prefix, but we hit a leaf.
- if (node->value == value) {
- // A larger prefix has the same value, so we're done.
- return;
- }
- // The larger prefix has a different value, so we need to convert it
- // into an internal node and continue processing on one of the leaves.
- node->l = _create_leaf(node->value);
- node->r = _create_leaf(node->value);
- }
- // We're not at the end of the prefix, and we're at an internal
- // node. Recurse on the left or right subtree.
- if (prefix & 0x80000000) {
- _set_recurse(node->r, prefix << 1, len - 1, value);
- } else {
- _set_recurse(node->l, prefix << 1, len - 1, value);
- }
- // At this point, we're an internal node, and the value is set
- // by one of our children or its descendent. If both children are
- // leaves with the same value, we can discard them and become a left.
- if (IS_LEAF(node->r) && IS_LEAF(node->l) && node->r->value == node->l->value) {
- node->value = node->l->value;
- _convert_to_leaf(node);
- }
- }
- // Set the value for a given network prefix, overwriting any existing
- // values on that prefix or subsets of it.
- // (Note: prefix must be in host byte order.)
- void constraint_set(constraint_t *con, uint32_t prefix, int len, value_t value)
- {
- assert(con);
- _set_recurse(con->root, prefix, len, value);
- con->painted = 0;
- }
- // Return the value pertaining to an address, according to the tree
- // starting at given root. (Note: address must be in host byte order.)
- static int _lookup_ip(node_t *root, uint32_t address)
- {
- assert(root);
- node_t *node = root;
- uint32_t mask = 0x80000000;
- for (;;) {
- if (IS_LEAF(node)) {
- return node->value;
- }
- if (address & mask) {
- node = node->r;
- } else {
- node = node->l;
- }
- mask >>= 1;
- }
- }
- // Return the value pertaining to an address.
- // (Note: address must be in host byte order.)
- value_t constraint_lookup_ip(constraint_t *con, uint32_t address)
- {
- assert(con);
- return _lookup_ip(con->root, address);
- }
- // Return the nth painted IP address.
- static int _lookup_index(node_t *root, uint64_t n)
- {
- assert(root);
- node_t *node = root;
- uint32_t ip = 0;
- uint32_t mask = 0x80000000;
- for (;;) {
- if (IS_LEAF(node)) {
- return ip | n;
- }
- if (n < node->l->count) {
- node = node->l;
- } else {
- n -= node->l->count;
- node = node->r;
- ip |= mask;
- }
- mask >>= 1;
- }
- }
- // For a given value, return the IP address with zero-based index n.
- // (i.e., if there are three addresses with value 0xFF, looking up index 1
- // will return the second one).
- // Note that the tree must have been previously painted with this value.
- uint32_t constraint_lookup_index(constraint_t *con, uint64_t index, value_t value)
- {
- assert(con);
- if (!con->painted || con->paint_value != value) {
- constraint_paint_value(con, value);
- }
- uint64_t radix_idx = index / (1 << (32 - RADIX_LENGTH));
- if (radix_idx < con->radix_len) {
- // Radix lookup
- uint32_t radix_offset = index % (1 << (32 - RADIX_LENGTH)); // TODO: bitwise maths
- return con->radix[radix_idx] | radix_offset;
- }
- // Otherwise, do the "slow" lookup in tree.
- // Note that tree counts do NOT include things in the radix,
- // so we subtract these off here.
- index -= con->radix_len * (1 << (32 - RADIX_LENGTH));
- assert(index < con->root->count);
- return _lookup_index(con->root, index);
- }
- // Implement count_ips by recursing on halves of the tree. Size represents
- // the number of addresses in a prefix at the current level of the tree.
- // If paint is specified, each node will have its count set to the number of
- // leaves under it set to value.
- // If exclude_radix is specified, the number of addresses will exlcude prefixes
- // that are a /RADIX_LENGTH or larger
- static uint64_t _count_ips_recurse(node_t *node, value_t value,
- uint64_t size, int paint, int exclude_radix)
- {
- assert(node);
- uint64_t n;
- if (IS_LEAF(node)) {
- if (node->value == value) {
- n = size;
- // Exclude prefixes already included in the radix
- if (exclude_radix && size >= (1 << (32 -RADIX_LENGTH))) {
- n = 0;
- }
- } else {
- n = 0;
- }
- } else {
- n = _count_ips_recurse(node->l, value, size >> 1, paint, exclude_radix) +
- _count_ips_recurse(node->r, value, size >> 1, paint, exclude_radix);
- }
- if (paint) {
- node->count = n;
- }
- return n;
- }
- // Return a node that determines the values for the addresses with
- // the given prefix. This is either the internal node that
- // corresponds to the end of the prefix or a leaf node that
- // encompasses the prefix. (Note: prefix must be in host byte order.)
- static node_t* _lookup_node(node_t *root, uint32_t prefix, int len)
- {
- assert(root);
- assert(0 <= len && len <= 32);
- node_t *node = root;
- uint32_t mask = 0x80000000;
- int i;
- for (i=0; i < len; i++) {
- if (IS_LEAF(node)) {
- return node;
- }
- if (prefix & mask) {
- node = node->r;
- } else {
- node = node->l;
- }
- mask >>= 1;
- }
- return node;
- }
- // For each node, precompute the count of leaves beneath it set to value.
- // Note that the tree can be painted for only one value at a time.
- void constraint_paint_value(constraint_t *con, value_t value)
- {
- assert(con);
- log_trace("constraint", "Painting value %lu", value);
- // Paint everything except what we will put in radix
- _count_ips_recurse(con->root, value, (uint64_t)1 << 32, 1, 1);
- // Fill in the radix array with a list of addresses
- uint32_t i;
- con->radix_len = 0;
- for (i=0; i < (1 << RADIX_LENGTH); i++) {
- uint32_t prefix = i << (32 - RADIX_LENGTH);
- node_t *node = _lookup_node(con->root, prefix, RADIX_LENGTH);
- if (IS_LEAF(node) && node->value == value) {
- // Add this prefix to the radix
- con->radix[con->radix_len++] = prefix;
- }
- }
- log_debug("constraint", "%lu IPs in radix array, %lu IPs in tree",
- con->radix_len * (1 << (32 - RADIX_LENGTH)), con->root->count);
- con->painted = 1;
- con->paint_value = value;
- }
- // Return the number of addresses that have a given value.
- uint64_t constraint_count_ips(constraint_t *con, value_t value)
- {
- assert(con);
- if (con->painted && con->paint_value == value) {
- return con->root->count + con->radix_len * (1 << (32 - RADIX_LENGTH));
- } else {
- return _count_ips_recurse(con->root, value, (uint64_t)1 << 32, 0, 0);
- }
- }
- // Initialize the tree.
- // All addresses will initally have the given value.
- constraint_t* constraint_init(value_t value)
- {
- constraint_t* con = xmalloc(sizeof(constraint_t));
- con->root = _create_leaf(value);
- con->radix = xcalloc(sizeof(uint32_t), 1 << RADIX_LENGTH);
- con->painted = 0;
- return con;
- }
- // Deinitialize and free the tree.
- void constraint_free(constraint_t *con)
- {
- assert(con);
- log_trace("constraint", "Cleaning up");
- _destroy_subtree(con->root);
- free(con->radix);
- free(con);
- }
- /*
- int main(void)
- {
- log_init(stderr, LOG_DEBUG);
- constraint_t *con = constraint_init(0);
- constraint_set(con, ntohl(inet_addr("128.128.0.0")), 1, 22);
- constraint_set(con, ntohl(inet_addr("128.128.0.0")), 1, 1);
- constraint_set(con, ntohl(inet_addr("128.0.0.0")), 1, 1);
- constraint_set(con, ntohl(inet_addr("10.0.0.0")), 24, 1);
- constraint_set(con, ntohl(inet_addr("10.0.0.0")), 24, 0);
- constraint_set(con, ntohl(inet_addr("10.11.12.0")), 24, 1);
- constraint_set(con, ntohl(inet_addr("141.212.0.0")), 16, 0);
- for (int x=1; x < 2; x++) {
- if (x == 1) {
- constraint_optimize(con);
- }
- printf("count(0)=%ld\n", constraint_count_ips(con, 0));
- printf("count(1)=%ld\n", constraint_count_ips(con, 1));
- printf("%d\n", constraint_lookup_ip(con,ntohl(inet_addr("10.11.12.0"))));
- assert(constraint_count_ips(con, 0) + constraint_count_ips(con, 1) == (uint64_t)1 << 32);
- uint32_t i=0, count=0;
- do {
- if (constraint_lookup_ip(con, i))
- count++;
- } while (++i != 0);
- printf("derived count(1)=%u\n", count);
- }
- constraint_free(con);
- }
- */
|