HolonObject.java 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. package holeg.model;
  2. import holeg.serialize.PostDeserialize;
  3. import java.util.*;
  4. import java.util.stream.Collectors;
  5. import java.util.stream.Stream;
  6. /**
  7. * The class HolonObject represents any Object on the system which capability of
  8. * injecting or consuming energy on the network, for instance a house or a power
  9. * plant.
  10. *
  11. * @author Gruppe14
  12. */
  13. public class HolonObject extends AbstractCanvasObject implements PostDeserialize {
  14. /* Array of all consumers */
  15. private final Set<HolonElement> elements = new HashSet<>();
  16. //Calculated values
  17. private transient HolonObjectState state;
  18. private transient float actualEnergy;
  19. private transient float energyFromHolon;
  20. private transient float energyToHolon;
  21. private transient float minimumConsumingElementEnergy;
  22. private transient float energyNeededFromHolon;
  23. private transient float energyFromConsumingElements;
  24. private transient float energySelfSupplied;
  25. /**
  26. * Constructor Set by default the name of the object equals to the category
  27. * name, until the user changes it.
  28. *
  29. * @param objName name of the Object
  30. */
  31. public HolonObject(String objName) {
  32. super(objName);
  33. }
  34. /**
  35. * Contructor of a copy of an Object.
  36. *
  37. * @param obj object to be copied
  38. */
  39. public HolonObject(HolonObject obj) {
  40. super(obj);
  41. for (HolonElement ele : obj.elements) {
  42. this.add(new HolonElement(ele));
  43. }
  44. }
  45. @Override
  46. public AbstractCanvasObject copy(){
  47. return new HolonObject(this);
  48. }
  49. /**
  50. * Getter for all Elements in the HolonObject.
  51. *
  52. * @return the elements ArrayList
  53. */
  54. public Stream<HolonElement> elementsStream() {
  55. return elements.stream();
  56. }
  57. public void clearElements() {
  58. elements.clear();
  59. }
  60. /**
  61. * adds an Element to the Object.
  62. *
  63. * @param element the Element to add
  64. */
  65. public void add(HolonElement element) {
  66. elements.add(element);
  67. element.parentObject = this;
  68. }
  69. public void add(Collection<HolonElement> elements) {
  70. for (HolonElement hE : elements) {
  71. hE.parentObject = this;
  72. }
  73. this.elements.addAll(elements);
  74. }
  75. /**
  76. * remove an Element to the Object.
  77. *
  78. * @param element the Element to add
  79. */
  80. public void remove(HolonElement element) {
  81. elements.remove(element);
  82. element.parentObject = null;
  83. }
  84. /**
  85. * This Method returns the smallest consuming HolonElement that is ACTIVE. If
  86. * the HolonObject has no Consumer its return null.
  87. *
  88. * @return The smallest consuming HolonElement or null.
  89. */
  90. public Optional<HolonElement> getMinimumConsumingElement() {
  91. return elements.stream().filter(element -> element.getActualEnergy() < 0).max((lhs, rhs) -> Float.compare(lhs.getActualEnergy(), rhs.getActualEnergy()));
  92. }
  93. /**
  94. * This Method returns the smallest consuming HolonElement'Energy that is
  95. * ACTIVE. If the HolonObject has no Consumer its return 0.
  96. *
  97. * @return The smallest consuming HolonElement or 0.
  98. */
  99. public float getMinimumConsumingElementEnergy() {
  100. return minimumConsumingElementEnergy;
  101. }
  102. /**
  103. * This Method returns the biggest consuming HolonElement'Energy that is ACTIVE.
  104. * If the HolonObject has no Consumer its return 0.
  105. *
  106. * @return The biggest consuming HolonElement or 0.
  107. */
  108. public float getMaximumConsumingElementEnergy() {
  109. return elements.stream().filter(element -> element.getActualEnergy() < 0).map(element -> -element.getActualEnergy()).max(Float::compare).orElse(0.0f);
  110. }
  111. public float getMaximumProductionPossible() {
  112. return elements.stream().map(HolonElement::getEnergy).filter(energy -> energy > 0).reduce(0.0f, Float::sum);
  113. }
  114. public float getMaximumConsumptionPossible() {
  115. return elements.stream().filter(element -> element.getEnergy() < 0).map(element -> -element.getEnergy()).reduce(0.0f, Float::sum);
  116. }
  117. /**
  118. * This Method returns the Energy of all HolonElements from the HolonObject that
  119. * are consuming. Its sums all Energies from the HolonElements of the
  120. * HolonObject that are ACTIVE and are Consumer. If the HolonObject have no
  121. * HolonElement its return 0;
  122. *
  123. * @return The Energy of the consuming HolonElements.
  124. */
  125. public float getEnergyNeededFromConsumingElements() {
  126. return energyFromConsumingElements;
  127. }
  128. /**
  129. * This Method calculate the amount of HolonElements that are consuming Energy
  130. * and are ACTIVE.
  131. *
  132. * @return The amount of HolonElements that are consuming Energy.
  133. */
  134. public int countConsumingElements() {
  135. return (int) elements.stream().filter(element -> element.getActualEnergy() < 0).count();
  136. }
  137. /**
  138. * This Method calculate the amount of HolonElements that are producing Energy
  139. * and are ACTIVE.
  140. *
  141. * @return The amount of HolonElements that are producing Energy.
  142. */
  143. public int countProducingElements() {
  144. return (int) elements.stream().filter(element -> element.getActualEnergy() > 0).count();
  145. }
  146. public int getNumberOfActiveElements() {
  147. return (int) elements.stream().filter(ele -> ele.active).count();
  148. }
  149. public int getNumberOfInActiveElements() {
  150. return (int) elements.stream().filter(ele -> !ele.active).count();
  151. }
  152. public int getNumberOfElements() {
  153. return elements.size();
  154. }
  155. /**
  156. * This Method returns the Energy of a HolonObject. Its sums all Energies from
  157. * the HolonElements of the HolonObject that are ACTIVE. If the HolonObject have
  158. * no HolonElement its return 0; Is the returned Energy negative then the
  159. * HolonObject need Energy because its consuming HolonElements need more Energy
  160. * then the producing HolonElements. Is the returned Energy positive its
  161. * reversed.
  162. *
  163. * @param timeStep is the TimeStep to compare the HolonElements.
  164. */
  165. public void calculateEnergy(int timeStep) {
  166. elements.forEach(ele -> ele.calculateState(timeStep));
  167. actualEnergy = elements.stream().map(HolonElement::getActualEnergy).reduce(0f, Float::sum);
  168. minimumConsumingElementEnergy = elements.stream().filter(element -> element.getActualEnergy() < 0).map(element -> -element.getActualEnergy()).min(Float::compare).orElse(0.0f);
  169. energyNeededFromHolon = (actualEnergy >= 0) ? 0 : -actualEnergy;
  170. energyFromConsumingElements = elements.stream().filter(element -> element.getActualEnergy() < 0).map(element -> -element.getActualEnergy()).reduce(0.0f, Float::sum);
  171. energySelfSupplied = elements.stream().map(HolonElement::getActualEnergy).filter(energy -> energy > 0).reduce(0.0f, Float::sum);
  172. energyToHolon = energyFromHolon = 0;
  173. }
  174. public float getActualEnergy() {
  175. return actualEnergy;
  176. }
  177. public HolonObjectState getState() {
  178. return state;
  179. }
  180. void setState(HolonObjectState state) {
  181. this.state = state;
  182. }
  183. public float getEnergyFromHolon() {
  184. return energyFromHolon;
  185. }
  186. void setEnergyFromHolon(float energyFromHolon) {
  187. this.energyFromHolon = energyFromHolon;
  188. }
  189. public float getEnergyNeededFromHolon() {
  190. return energyNeededFromHolon;
  191. }
  192. public float getEnergySelfSupplied() {
  193. return energySelfSupplied;
  194. }
  195. public float getCurrentEnergy() {
  196. return energyFromHolon - energyNeededFromHolon;
  197. }
  198. public float getSupplyBarPercentage() {
  199. return (energyFromConsumingElements > 0.001) ? (energyFromHolon + energySelfSupplied) / energyFromConsumingElements : 1.0f;
  200. }
  201. public String toString() {
  202. return "[HolonObject: " + "id=" + getId() + ", name=" + name + ", state=" + state + ", pos=" + position+ ", elements=[" + elementsStream().map(HolonElement::getName).collect(Collectors.joining(", ")) + "]]";
  203. }
  204. public float getEnergyToHolon() {
  205. return energyToHolon;
  206. }
  207. void setEnergyToHolon(float energyToHolon) {
  208. this.energyToHolon = energyToHolon;
  209. }
  210. public void calculateState() {
  211. if(actualEnergy > 0){
  212. state = HolonObjectState.PRODUCER;
  213. }else if(elements.isEmpty()){
  214. state = HolonObjectState.NO_ENERGY;
  215. }else if(energySelfSupplied + energyFromHolon > energyFromConsumingElements) {
  216. state = (HolonObjectState.OVER_SUPPLIED);
  217. }else if(energySelfSupplied + energyFromHolon == energyFromConsumingElements) {
  218. state = (HolonObjectState.SUPPLIED);
  219. }else if(energySelfSupplied + energyFromHolon >= minimumConsumingElementEnergy) {
  220. state = (HolonObjectState.PARTIALLY_SUPPLIED);
  221. }else {
  222. state = (HolonObjectState.NOT_SUPPLIED);
  223. }
  224. }
  225. @Override
  226. public void postDeserialize() {
  227. elements.forEach(ele -> ele.parentObject = this);
  228. }
  229. public enum HolonObjectState {
  230. NO_ENERGY, NOT_SUPPLIED, SUPPLIED, PRODUCER, PARTIALLY_SUPPLIED, OVER_SUPPLIED
  231. }
  232. }