DecoratedNetwork.java.orig 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. package holeg.ui.model;
  2. import java.util.ArrayList;
  3. import java.util.stream.Stream;
  4. import holeg.model.Edge;
  5. import holeg.model.HolonElement;
  6. import holeg.model.HolonObject;
  7. import holeg.model.HolonObject.HolonObjectState;
  8. import holeg.ui.model.Model.FairnessModel;
  9. public class DecoratedNetwork {
  10. // private ArrayList<Supplier> supplierList = new ArrayList<Supplier>();
  11. // private ArrayList<Consumer> consumerList = new ArrayList<Consumer>();
  12. // private ArrayList<Consumer> consumerSelfSuppliedList = new ArrayList<Consumer>();
  13. // private ArrayList<Passiv> passivNoEnergyList = new ArrayList<Passiv>();
  14. private ArrayList<Edge> edgeList = new ArrayList<Edge>();
  15. public DecoratedNetwork(MinimumNetwork minimumNetwork, int Iteration, FairnessModel actualFairnessModel) {
  16. switch (actualFairnessModel) {
  17. case AllEqual:
  18. calculateAllEqualNetwork(minimumNetwork, Iteration);
  19. break;
  20. case MininumDemandFirst:
  21. default:
  22. calculateMinimumDemandFirstNetwork(minimumNetwork, Iteration);
  23. break;
  24. }
  25. }
  26. // // Getter:
  27. // public ArrayList<Supplier> getSupplierList() {
  28. // return supplierList;
  29. // }
  30. //
  31. // public ArrayList<Consumer> getConsumerList() {
  32. // return consumerList;
  33. // }
  34. //
  35. // public ArrayList<Consumer> getConsumerSelfSuppliedList() {
  36. // return consumerSelfSuppliedList;
  37. // }
  38. //
  39. // public ArrayList<Passiv> getPassivNoEnergyList() {
  40. // return passivNoEnergyList;
  41. // }
  42. public ArrayList<Edge> getDecoratedCableList() {
  43. return edgeList;
  44. }
  45. // Calculations:
  46. private void calculateMinimumDemandFirstNetwork(MinimumNetwork minimumNetwork, int Iteration) {
  47. categorize(minimumNetwork, Iteration);
  48. // Sort SupplierList according to the EnergyToSupplyNetwork maximum first.
  49. // Sort ConsumerList according to the MinimumConsumingElementEnergy minimum
  50. // first.
  51. supplierList.sort((Supplier lhs,
  52. Supplier rhs) -> -Float.compare(lhs.getEnergyToSupplyNetwork(), rhs.getEnergyToSupplyNetwork()));
  53. consumerList.sort((Consumer lhs, Consumer rhs) -> Float.compare(lhs.getMinimumConsumingElementEnergy(),
  54. rhs.getMinimumConsumingElementEnergy()));
  55. // consumerList.forEach((con) ->
  56. // System.out.println(con.getMinimumConsumingElementEnergy()));
  57. // consumerList.forEach((con) -> System.out.println("AfterSorting" + con));
  58. float energyToSupplyInTheNetwork = supplierList.stream()
  59. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  60. .reduce(0.0f, (a, b) -> a + b);
  61. decorateCable(minimumNetwork, energyToSupplyInTheNetwork);
  62. outerLoop: for (Consumer con : consumerList) {
  63. // gehe Supplier list durch wer ihn supplien kann.
  64. for (Supplier sup : supplierList) {
  65. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  66. if (energyRdyToSupply == 0.0f)
  67. continue;
  68. float energyNeededForMinimumConsumingElement = con.getMinimumConsumingElementEnergy()
  69. - con.getEnergyFromNetwork();
  70. if (energyNeededForMinimumConsumingElement > energyToSupplyInTheNetwork) {
  71. // Dont supply a minimumElement when you cant supply it fully
  72. break outerLoop;
  73. }
  74. if (energyRdyToSupply >= energyNeededForMinimumConsumingElement) {
  75. energyToSupplyInTheNetwork -= energyNeededForMinimumConsumingElement;
  76. supply(con, sup, energyNeededForMinimumConsumingElement);
  77. continue outerLoop;
  78. } else {
  79. energyToSupplyInTheNetwork -= energyRdyToSupply;
  80. supply(con, sup, energyRdyToSupply);
  81. }
  82. }
  83. // No more Energy in the network
  84. break;
  85. }
  86. // consumerList.forEach((con) -> System.out.println("AfterSuppliing
  87. // MinimumDemand " + con));
  88. // Sort ConsumerList according to the EnergyNeeded to supply fully after minimum
  89. // Demand First.
  90. consumerList.sort((Consumer lhs, Consumer rhs) -> Float.compare(
  91. lhs.getEnergyNeededFromNetwork() - lhs.getEnergyFromNetwork(),
  92. rhs.getEnergyNeededFromNetwork() - rhs.getEnergyFromNetwork()));
  93. // Supply consumer fully
  94. outerLoop: for (Consumer con : consumerList) {
  95. // gehe Supplier list durch wer ihn supplien kann.
  96. for (Supplier sup : supplierList) {
  97. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  98. if (energyRdyToSupply == 0.0f)
  99. continue;
  100. float energyNeededForFullySupply = con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  101. if (energyNeededForFullySupply == 0.0f)
  102. continue outerLoop;
  103. if (energyRdyToSupply >= energyNeededForFullySupply) {
  104. supply(con, sup, energyNeededForFullySupply);
  105. continue outerLoop;
  106. } else {
  107. supply(con, sup, energyRdyToSupply);
  108. }
  109. }
  110. // No more Energy in the network
  111. break;
  112. }
  113. // consumerList.forEach((con) -> System.out.println("AfterFullySuplieing" +
  114. // con));
  115. // If Energy Left Supply all equal
  116. // Count EnergyLeft
  117. float energyLeft = supplierList.stream()
  118. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  119. .reduce(0.0f, (a, b) -> a + b);
  120. // System.out.println("EnergyLeft: " + energyLeft);
  121. if (energyLeft > 0.0f && (consumerList.size() + consumerSelfSuppliedList.size() != 0)) {
  122. float equalAmountOfEnergyToSupply = energyLeft
  123. / ((float) (consumerList.size() + consumerSelfSuppliedList.size()));
  124. outerLoop: for (Consumer con : consumerList) {
  125. // gehe Supplier list durch wer ihn supplien kann.
  126. for (Supplier sup : supplierList) {
  127. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  128. if (energyRdyToSupply == 0.0f)
  129. continue;
  130. float energyNeededToSupplyConsumerTheEqualAmount = equalAmountOfEnergyToSupply
  131. + con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  132. if (energyRdyToSupply >= energyNeededToSupplyConsumerTheEqualAmount) {
  133. supply(con, sup, energyNeededToSupplyConsumerTheEqualAmount);
  134. continue outerLoop;
  135. } else {
  136. supply(con, sup, energyRdyToSupply);
  137. }
  138. }
  139. // No more Energy in the network
  140. break;
  141. }
  142. outerLoop: for (Consumer con : consumerSelfSuppliedList) {
  143. // gehe Supplier list durch wer ihn supplien kann.
  144. for (Supplier sup : supplierList) {
  145. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  146. if (energyRdyToSupply == 0.0f)
  147. continue;
  148. float energyNeededToSupplyConsumerTheEqualAmount = equalAmountOfEnergyToSupply
  149. + con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  150. if (energyRdyToSupply >= energyNeededToSupplyConsumerTheEqualAmount) {
  151. supply(con, sup, energyNeededToSupplyConsumerTheEqualAmount);
  152. continue outerLoop;
  153. } else {
  154. supply(con, sup, energyRdyToSupply);
  155. }
  156. }
  157. // No more Energy in the network
  158. break;
  159. }
  160. }
  161. // consumerList.forEach((con) -> System.out.println("AfterOverSuppleiing" +
  162. // con));
  163. // consumerSelfSuppliedList.forEach((con) ->
  164. // System.out.println("AfterOverSuppleiing" + con));
  165. calculateStates();
  166. }
  167. private void decorateCable(MinimumNetwork minimumNetwork, float energyToSupplyInTheNetwork) {
  168. // DecoratedCables
  169. // Minimum demand first:
  170. this.edgeList = minimumNetwork.getEdgeList();
  171. for (Edge edge : edgeList) {
  172. edge.setActualFlow(energyToSupplyInTheNetwork);
  173. }
  174. }
  175. private void calculateAllEqualNetwork(MinimumNetwork minimumNetwork, int Iteration) {
  176. categorize(minimumNetwork, Iteration);
  177. float energyToSupplyInTheNetwork = supplierList.stream()
  178. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  179. .reduce(0.0f, Float::sum);
  180. float energyForEachConsumer = (consumerList.size() != 0) ? energyToSupplyInTheNetwork / consumerList.size()
  181. : 0.0f;
  182. decorateCable(minimumNetwork, energyToSupplyInTheNetwork);
  183. // Supply consumer equal
  184. outerLoop: for (Consumer con : consumerList) {
  185. // gehe Supplier list durch wer ihn supplien kann.
  186. float energyNeededForEqualSupply = energyForEachConsumer;
  187. for (Supplier sup : supplierList) {
  188. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  189. if (energyRdyToSupply == 0.0f)
  190. continue;
  191. if (energyRdyToSupply >= energyNeededForEqualSupply) {
  192. supply(con, sup, energyNeededForEqualSupply);
  193. continue outerLoop;
  194. } else {
  195. supply(con, sup, energyRdyToSupply);
  196. energyNeededForEqualSupply -= energyRdyToSupply;
  197. }
  198. }
  199. // No more Energy in the network
  200. break;
  201. }
  202. calculateStates();
  203. }
  204. private void calculateStates() {
  205. // CalculateStates:
  206. supplierList.forEach(sup -> sup.setState(HolonObjectState.PRODUCER));
  207. passivNoEnergyList.forEach(sup -> sup.setState(HolonObjectState.NO_ENERGY));
  208. for (Consumer con : this.consumerList) {
  209. setConsumerState(con);
  210. }
  211. for (Consumer con : this.consumerSelfSuppliedList) {
  212. setConsumerState(con);
  213. }
  214. }
  215. private void categorize(MinimumNetwork minimumNetwork, int Iteration) {
  216. // Categorize
  217. for (HolonObject hObject : minimumNetwork.getHolonObjectList()) {
  218. float energyNeeded = hObject.getEnergyNeededFromConsumingElements();
  219. float energySelfProducing = hObject.getEnergySelfProducingFromProducingElements();
  220. if (energyNeeded < energySelfProducing) {
  221. Supplier sup = new Supplier(hObject, energySelfProducing - energyNeeded, energyNeeded);
  222. supplierList.add(sup);
  223. } else if (energyNeeded > energySelfProducing) {
  224. Consumer con = new Consumer(hObject);
  225. con.setEnergyNeededFromNetwork(energyNeeded - energySelfProducing);
  226. con.setMinimumConsumingElementEnergy(hObject.getMinimumConsumingElementEnergy());
  227. con.setEnergyFromConsumingElemnets(hObject.getEnergyNeededFromConsumingElements());
  228. con.setEnergySelfSupplied(hObject.getEnergySelfProducingFromProducingElements());
  229. consumerList.add(con);
  230. } else if (energyNeeded == energySelfProducing) {
  231. if (energySelfProducing == 0.0f) {
  232. Passiv pas = new Passiv(hObject);
  233. passivNoEnergyList.add(pas);
  234. } else {
  235. Consumer con = new Consumer(hObject);
  236. con.setEnergyNeededFromNetwork(0.0f);
  237. con.setMinimumConsumingElementEnergy(hObject.getMinimumConsumingElementEnergy());
  238. con.setEnergyFromConsumingElemnets(hObject.getEnergyNeededFromConsumingElements());
  239. con.setEnergySelfSupplied(hObject.getEnergySelfProducingFromProducingElements());
  240. consumerSelfSuppliedList.add(con);
  241. }
  242. }
  243. }
  244. }
  245. private void setConsumerState(Consumer con) {
  246. if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() > con.getEnergyFromConsumingElemnets()) {
  247. con.setState(HolonObjectState.OVER_SUPPLIED);
  248. } else if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() == con.getEnergyFromConsumingElemnets()) {
  249. con.setState(HolonObjectState.SUPPLIED);
  250. } else if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() >= con.getMinimumConsumingElementEnergy()) {
  251. con.setState(HolonObjectState.PARTIALLY_SUPPLIED);
  252. } else {
  253. con.setState(HolonObjectState.NOT_SUPPLIED);
  254. }
  255. }
  256. /**
  257. * No Checks.
  258. *
  259. * @param con
  260. * @param sup
  261. * @param energy
  262. */
  263. private void supply(Consumer con, Supplier sup, float energy) {
  264. sup.getConsumerList().add(sup.new ConsumerListEntry(con, energy));
  265. sup.setEnergySupplied(sup.getEnergySupplied() + energy);
  266. con.getSupplierList().add(con.new SupplierListEntry(sup, energy));
  267. con.setEnergyFromNetwork(con.getEnergyFromNetwork() + energy);
  268. }
  269. public int getAmountOfActiveElements() {
  270. return supplierList.stream().map(object -> object.getModel().getNumberOfActiveElements()).reduce(0,
  271. Integer::sum)
  272. + consumerList.stream().map(object -> object.getModel().getNumberOfActiveElements()).reduce(0,
  273. Integer::sum)
  274. + consumerSelfSuppliedList.stream().map(object -> object.getModel().getNumberOfActiveElements())
  275. .reduce(0, Integer::sum);
  276. }
  277. public int getAmountOfElements() {
  278. return supplierList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0, Integer::sum)
  279. + consumerList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0, Integer::sum)
  280. + consumerSelfSuppliedList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0,
  281. Integer::sum)
  282. + passivNoEnergyList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0,
  283. Integer::sum);
  284. }
  285. public int getAmountOfConsumer() {
  286. return consumerList.size() + this.consumerSelfSuppliedList.size();
  287. }
  288. public int getAmountOfSupplier() {
  289. return supplierList.size();
  290. }
  291. public int getAmountOfConsumerWithState(HolonObjectState state) {
  292. return (int) (consumerList.stream().filter(con -> con.getState() == state).count()
  293. + consumerSelfSuppliedList.stream().filter(con -> con.getState() == state).count());
  294. }
  295. public int getAmountOfPassiv() {
  296. return passivNoEnergyList.size();
  297. }
  298. public int getAmountOfHolonObjects() {
  299. return getAmountOfConsumer() + getAmountOfSupplier() + getAmountOfPassiv();
  300. }
  301. public float getTotalConsumption() {
  302. float energy = consumerList.stream().map(con -> con.getEnergyFromConsumingElemnets()).reduce(0.f, Float::sum)
  303. + consumerSelfSuppliedList.stream().map(con -> con.getEnergyFromConsumingElemnets()).reduce(0.f,
  304. Float::sum);
  305. energy += supplierList.stream().map(sup -> sup.getEnergySelfConsuming()).reduce(0.f, Float::sum);
  306. return energy;
  307. }
  308. public float getAverageConsumptionInNetworkForHolonObject() {
  309. return getTotalConsumption() / (float) getAmountOfHolonObjects();
  310. }
  311. public float getTotalProduction() {
  312. float energy = consumerList.stream().map(con -> con.getEnergySelfSupplied()).reduce(0.f, Float::sum)
  313. + consumerSelfSuppliedList.stream().map(con -> con.getEnergySelfSupplied()).reduce(0.f, Float::sum);
  314. energy += supplierList.stream().map(sup -> sup.getEnergyProducing()).reduce(0.f, Float::sum);
  315. return energy;
  316. }
  317. public float getAverageProductionInNetworkForHolonObject() {
  318. return getTotalProduction() / (float) getAmountOfHolonObjects();
  319. }
  320. /**
  321. * returns the Varianz in Poduction
  322. *
  323. * @return
  324. */
  325. public float getVarianzInProductionInNetworkForHolonObjects() {
  326. float average = getAverageProductionInNetworkForHolonObject();
  327. float sum = consumerList.stream().map(con -> squared(con.getEnergySelfSupplied() - average)).reduce(0.f,
  328. Float::sum)
  329. + consumerSelfSuppliedList.stream().map(con -> squared(con.getEnergySelfSupplied() - average))
  330. .reduce(0.f, Float::sum)
  331. + supplierList.stream().map(sup -> squared(sup.getEnergyProducing() - average)).reduce(0.f, Float::sum);
  332. return sum / (float) getAmountOfHolonObjects();
  333. }
  334. public float getDeviationInProductionInNetworkForHolonObjects() {
  335. return (float) Math.sqrt(getVarianzInProductionInNetworkForHolonObjects());
  336. }
  337. public float getVarianzInConsumptionInNetworkForHolonObjects() {
  338. float average = getAverageConsumptionInNetworkForHolonObject();
  339. float sum = consumerList.stream().map(con -> squared(con.getEnergyFromConsumingElemnets() - average))
  340. .reduce(0.f, Float::sum)
  341. + consumerSelfSuppliedList.stream().map(con -> squared(con.getEnergyFromConsumingElemnets() - average))
  342. .reduce(0.f, Float::sum)
  343. + supplierList.stream().map(sup -> squared(sup.getEnergySelfConsuming() - average)).reduce(0.f,
  344. Float::sum);
  345. return sum / (float) getAmountOfHolonObjects();
  346. }
  347. public float getDeviationInConsumptionInNetworkForHolonObjects() {
  348. return (float) Math.sqrt(getVarianzInConsumptionInNetworkForHolonObjects());
  349. }
  350. // HelperFunction
  351. public Stream<HolonElement> getElementStream() {
  352. return Stream.concat(consumerList.stream().flatMap(con -> con.getModel().getElements()),
  353. Stream.concat(consumerSelfSuppliedList.stream().flatMap(con -> con.getModel().getElements()),
  354. Stream.concat(supplierList.stream().flatMap(con -> con.getModel().getElements()),
  355. passivNoEnergyList.stream().flatMap(con -> con.getModel().getElements()))));
  356. }
  357. /**
  358. *
  359. * @return a list of energy
  360. */
  361. public Stream<Float> getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork() {
  362. return getElementStream()
  363. .filter(ele -> (ele.flexList.stream().anyMatch(flex -> flex.offered)))
  364. .map(ele -> -ele.getActualEnergy());
  365. }
  366. public Stream<Float> getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork() {
  367. return getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork().filter(value -> (value > 0.f));
  368. }
  369. public Stream<Float> getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork() {
  370. return getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork().filter(value -> (value < 0.f))
  371. .map(value -> -value);
  372. }
  373. public float getFlexibilityProductionCapacity() {
  374. return getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork().reduce(0.f, Float::sum);
  375. }
  376. public float getFlexibilityConsumptionCapacity() {
  377. return getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork().reduce(0.f, Float::sum);
  378. }
  379. public int getAmountOfProductionFlexibilities() {
  380. return (int)getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork().count();
  381. }
  382. public int getAmountOfConsumptionFlexibilities() {
  383. return (int)getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork().count();
  384. }
  385. public float getAverageFlexibilityProduction() {
  386. int amount = getAmountOfProductionFlexibilities();
  387. return (amount > 0) ? getFlexibilityProductionCapacity() / (float) amount : 0.f;
  388. }
  389. public float getAverageFlexibilityConsumption() {
  390. int amount = getAmountOfConsumptionFlexibilities();
  391. return (amount > 0) ? getFlexibilityConsumptionCapacity() / (float) amount : 0.f;
  392. }
  393. public float getVarianzInFlexibilitieConsumption() {
  394. float average = getAverageFlexibilityConsumption();
  395. float sum = getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork()
  396. .map(energy -> squared(energy - average)).reduce(0.f, Float::sum);
  397. int amountOfFlexibilities = getAmountOfConsumptionFlexibilities();
  398. return (amountOfFlexibilities > 0) ? sum / (float) amountOfFlexibilities : 0.f;
  399. }
  400. public float getVarianzInFlexibilitieProduction() {
  401. float average = getAverageFlexibilityProduction();
  402. float sum = getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork()
  403. .map(energy -> squared(energy - average)).reduce(0.f, Float::sum);
  404. int amountOfFlexibilities = getAmountOfProductionFlexibilities();
  405. return (amountOfFlexibilities > 0) ? sum / (float) amountOfFlexibilities : 0.f;
  406. }
  407. public float getDiviationInFlexibilityConsumption() {
  408. return (float) Math.sqrt(getVarianzInFlexibilitieConsumption());
  409. }
  410. public float getDiviationInFlexibilityProduction() {
  411. return (float) Math.sqrt(getVarianzInFlexibilitieProduction());
  412. }
  413. // Help Function
  414. private float squared(float input) {
  415. return input * input;
  416. }
  417. }