DecoratedNetwork.java 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. package holeg.ui.model;
  2. import java.util.ArrayList;
  3. import java.util.stream.Stream;
  4. import holeg.model.Edge;
  5. import holeg.model.HolonElement;
  6. import holeg.model.HolonObject;
  7. import holeg.ui.model.DecoratedHolonObject.HolonObjectState;
  8. import holeg.ui.model.Model.FairnessModel;
  9. public class DecoratedNetwork {
  10. private ArrayList<Supplier> supplierList = new ArrayList<Supplier>();
  11. private ArrayList<Consumer> consumerList = new ArrayList<Consumer>();
  12. private ArrayList<Consumer> consumerSelfSuppliedList = new ArrayList<Consumer>();
  13. private ArrayList<Passiv> passivNoEnergyList = new ArrayList<Passiv>();
  14. private ArrayList<Edge> edgeList = new ArrayList<Edge>();
  15. public DecoratedNetwork(MinimumNetwork minimumNetwork, int Iteration, FairnessModel actualFairnessModel) {
  16. switch (actualFairnessModel) {
  17. case AllEqual:
  18. calculateAllEqualNetwork(minimumNetwork, Iteration);
  19. break;
  20. case MininumDemandFirst:
  21. default:
  22. calculateMinimumDemandFirstNetwork(minimumNetwork, Iteration);
  23. break;
  24. }
  25. }
  26. // Getter:
  27. public ArrayList<Supplier> getSupplierList() {
  28. return supplierList;
  29. }
  30. public ArrayList<Consumer> getConsumerList() {
  31. return consumerList;
  32. }
  33. public ArrayList<Consumer> getConsumerSelfSuppliedList() {
  34. return consumerSelfSuppliedList;
  35. }
  36. public ArrayList<Passiv> getPassivNoEnergyList() {
  37. return passivNoEnergyList;
  38. }
  39. public ArrayList<Edge> getDecoratedCableList() {
  40. return edgeList;
  41. }
  42. // Calculations:
  43. private void calculateMinimumDemandFirstNetwork(MinimumNetwork minimumNetwork, int Iteration) {
  44. categorize(minimumNetwork, Iteration);
  45. // Sort SupplierList according to the EnergyToSupplyNetwork maximum first.
  46. // Sort ConsumerList according to the MinimumConsumingElementEnergy minimum
  47. // first.
  48. supplierList.sort((Supplier lhs,
  49. Supplier rhs) -> -Float.compare(lhs.getEnergyToSupplyNetwork(), rhs.getEnergyToSupplyNetwork()));
  50. consumerList.sort((Consumer lhs, Consumer rhs) -> Float.compare(lhs.getMinimumConsumingElementEnergy(),
  51. rhs.getMinimumConsumingElementEnergy()));
  52. // consumerList.forEach((con) ->
  53. // System.out.println(con.getMinimumConsumingElementEnergy()));
  54. // consumerList.forEach((con) -> System.out.println("AfterSorting" + con));
  55. float energyToSupplyInTheNetwork = supplierList.stream()
  56. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  57. .reduce(0.0f, (a, b) -> a + b);
  58. decorateCable(minimumNetwork, energyToSupplyInTheNetwork);
  59. outerLoop: for (Consumer con : consumerList) {
  60. // gehe Supplier list durch wer ihn supplien kann.
  61. for (Supplier sup : supplierList) {
  62. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  63. if (energyRdyToSupply == 0.0f)
  64. continue;
  65. float energyNeededForMinimumConsumingElement = con.getMinimumConsumingElementEnergy()
  66. - con.getEnergyFromNetwork();
  67. if (energyNeededForMinimumConsumingElement > energyToSupplyInTheNetwork) {
  68. // Dont supply a minimumElement when you cant supply it fully
  69. break outerLoop;
  70. }
  71. if (energyRdyToSupply >= energyNeededForMinimumConsumingElement) {
  72. energyToSupplyInTheNetwork -= energyNeededForMinimumConsumingElement;
  73. supply(con, sup, energyNeededForMinimumConsumingElement);
  74. continue outerLoop;
  75. } else {
  76. energyToSupplyInTheNetwork -= energyRdyToSupply;
  77. supply(con, sup, energyRdyToSupply);
  78. }
  79. }
  80. // No more Energy in the network
  81. break;
  82. }
  83. // consumerList.forEach((con) -> System.out.println("AfterSuppliing
  84. // MinimumDemand " + con));
  85. // Sort ConsumerList according to the EnergyNeeded to supply fully after minimum
  86. // Demand First.
  87. consumerList.sort((Consumer lhs, Consumer rhs) -> Float.compare(
  88. lhs.getEnergyNeededFromNetwork() - lhs.getEnergyFromNetwork(),
  89. rhs.getEnergyNeededFromNetwork() - rhs.getEnergyFromNetwork()));
  90. // Supply consumer fully
  91. outerLoop: for (Consumer con : consumerList) {
  92. // gehe Supplier list durch wer ihn supplien kann.
  93. for (Supplier sup : supplierList) {
  94. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  95. if (energyRdyToSupply == 0.0f)
  96. continue;
  97. float energyNeededForFullySupply = con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  98. if (energyNeededForFullySupply == 0.0f)
  99. continue outerLoop;
  100. if (energyRdyToSupply >= energyNeededForFullySupply) {
  101. supply(con, sup, energyNeededForFullySupply);
  102. continue outerLoop;
  103. } else {
  104. supply(con, sup, energyRdyToSupply);
  105. }
  106. }
  107. // No more Energy in the network
  108. break;
  109. }
  110. // consumerList.forEach((con) -> System.out.println("AfterFullySuplieing" +
  111. // con));
  112. // If Energy Left Supply all equal
  113. // Count EnergyLeft
  114. float energyLeft = supplierList.stream()
  115. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  116. .reduce(0.0f, (a, b) -> a + b);
  117. // System.out.println("EnergyLeft: " + energyLeft);
  118. if (energyLeft > 0.0f && (consumerList.size() + consumerSelfSuppliedList.size() != 0)) {
  119. float equalAmountOfEnergyToSupply = energyLeft
  120. / ((float) (consumerList.size() + consumerSelfSuppliedList.size()));
  121. outerLoop: for (Consumer con : consumerList) {
  122. // gehe Supplier list durch wer ihn supplien kann.
  123. for (Supplier sup : supplierList) {
  124. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  125. if (energyRdyToSupply == 0.0f)
  126. continue;
  127. float energyNeededToSupplyConsumerTheEqualAmount = equalAmountOfEnergyToSupply
  128. + con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  129. if (energyRdyToSupply >= energyNeededToSupplyConsumerTheEqualAmount) {
  130. supply(con, sup, energyNeededToSupplyConsumerTheEqualAmount);
  131. continue outerLoop;
  132. } else {
  133. supply(con, sup, energyRdyToSupply);
  134. }
  135. }
  136. // No more Energy in the network
  137. break;
  138. }
  139. outerLoop: for (Consumer con : consumerSelfSuppliedList) {
  140. // gehe Supplier list durch wer ihn supplien kann.
  141. for (Supplier sup : supplierList) {
  142. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  143. if (energyRdyToSupply == 0.0f)
  144. continue;
  145. float energyNeededToSupplyConsumerTheEqualAmount = equalAmountOfEnergyToSupply
  146. + con.getEnergyNeededFromNetwork() - con.getEnergyFromNetwork();
  147. if (energyRdyToSupply >= energyNeededToSupplyConsumerTheEqualAmount) {
  148. supply(con, sup, energyNeededToSupplyConsumerTheEqualAmount);
  149. continue outerLoop;
  150. } else {
  151. supply(con, sup, energyRdyToSupply);
  152. }
  153. }
  154. // No more Energy in the network
  155. break;
  156. }
  157. }
  158. // consumerList.forEach((con) -> System.out.println("AfterOverSuppleiing" +
  159. // con));
  160. // consumerSelfSuppliedList.forEach((con) ->
  161. // System.out.println("AfterOverSuppleiing" + con));
  162. calculateStates();
  163. }
  164. private void decorateCable(MinimumNetwork minimumNetwork, float energyToSupplyInTheNetwork) {
  165. // DecoratedCables
  166. // Minimum demand first:
  167. this.edgeList = minimumNetwork.getEdgeList();
  168. for (Edge edge : edgeList) {
  169. edge.setActualFlow(energyToSupplyInTheNetwork);
  170. }
  171. }
  172. private void calculateAllEqualNetwork(MinimumNetwork minimumNetwork, int Iteration) {
  173. categorize(minimumNetwork, Iteration);
  174. float energyToSupplyInTheNetwork = supplierList.stream()
  175. .map(supplier -> supplier.getEnergyToSupplyNetwork() - supplier.getEnergySupplied())
  176. .reduce(0.0f, Float::sum);
  177. float energyForEachConsumer = (consumerList.size() != 0) ? energyToSupplyInTheNetwork / consumerList.size()
  178. : 0.0f;
  179. decorateCable(minimumNetwork, energyToSupplyInTheNetwork);
  180. // Supply consumer equal
  181. outerLoop: for (Consumer con : consumerList) {
  182. // gehe Supplier list durch wer ihn supplien kann.
  183. float energyNeededForEqualSupply = energyForEachConsumer;
  184. for (Supplier sup : supplierList) {
  185. float energyRdyToSupply = sup.getEnergyToSupplyNetwork() - sup.getEnergySupplied();
  186. if (energyRdyToSupply == 0.0f)
  187. continue;
  188. if (energyRdyToSupply >= energyNeededForEqualSupply) {
  189. supply(con, sup, energyNeededForEqualSupply);
  190. continue outerLoop;
  191. } else {
  192. supply(con, sup, energyRdyToSupply);
  193. energyNeededForEqualSupply -= energyRdyToSupply;
  194. }
  195. }
  196. // No more Energy in the network
  197. break;
  198. }
  199. calculateStates();
  200. }
  201. private void calculateStates() {
  202. // CalculateStates:
  203. supplierList.forEach(sup -> sup.setState(HolonObjectState.PRODUCER));
  204. passivNoEnergyList.forEach(sup -> sup.setState(HolonObjectState.NO_ENERGY));
  205. for (Consumer con : this.consumerList) {
  206. setConsumerState(con);
  207. }
  208. for (Consumer con : this.consumerSelfSuppliedList) {
  209. setConsumerState(con);
  210. }
  211. }
  212. private void categorize(MinimumNetwork minimumNetwork, int Iteration) {
  213. // Categorize
  214. for (HolonObject hObject : minimumNetwork.getHolonObjectList()) {
  215. float energyNeeded = hObject.getEnergyNeededFromConsumingElements();
  216. float energySelfProducing = hObject.getEnergySelfProducingFromProducingElements();
  217. if (energyNeeded < energySelfProducing) {
  218. Supplier sup = new Supplier(hObject, energySelfProducing - energyNeeded, energyNeeded);
  219. supplierList.add(sup);
  220. } else if (energyNeeded > energySelfProducing) {
  221. Consumer con = new Consumer(hObject);
  222. con.setEnergyNeededFromNetwork(energyNeeded - energySelfProducing);
  223. con.setMinimumConsumingElementEnergy(hObject.getMinimumConsumingElementEnergy());
  224. con.setEnergyFromConsumingElemnets(hObject.getEnergyNeededFromConsumingElements());
  225. con.setEnergySelfSupplied(hObject.getEnergySelfProducingFromProducingElements());
  226. consumerList.add(con);
  227. } else if (energyNeeded == energySelfProducing) {
  228. if (energySelfProducing == 0.0f) {
  229. Passiv pas = new Passiv(hObject);
  230. passivNoEnergyList.add(pas);
  231. } else {
  232. Consumer con = new Consumer(hObject);
  233. con.setEnergyNeededFromNetwork(0.0f);
  234. con.setMinimumConsumingElementEnergy(hObject.getMinimumConsumingElementEnergy());
  235. con.setEnergyFromConsumingElemnets(hObject.getEnergyNeededFromConsumingElements());
  236. con.setEnergySelfSupplied(hObject.getEnergySelfProducingFromProducingElements());
  237. consumerSelfSuppliedList.add(con);
  238. }
  239. }
  240. }
  241. }
  242. private void setConsumerState(Consumer con) {
  243. if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() > con.getEnergyFromConsumingElemnets()) {
  244. con.setState(HolonObjectState.OVER_SUPPLIED);
  245. } else if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() == con.getEnergyFromConsumingElemnets()) {
  246. con.setState(HolonObjectState.SUPPLIED);
  247. } else if (con.getEnergySelfSupplied() + con.getEnergyFromNetwork() >= con.getMinimumConsumingElementEnergy()) {
  248. con.setState(HolonObjectState.PARTIALLY_SUPPLIED);
  249. } else {
  250. con.setState(HolonObjectState.NOT_SUPPLIED);
  251. }
  252. }
  253. /**
  254. * No Checks.
  255. *
  256. * @param con
  257. * @param sup
  258. * @param energy
  259. */
  260. private void supply(Consumer con, Supplier sup, float energy) {
  261. sup.getConsumerList().add(sup.new ConsumerListEntry(con, energy));
  262. sup.setEnergySupplied(sup.getEnergySupplied() + energy);
  263. con.getSupplierList().add(con.new SupplierListEntry(sup, energy));
  264. con.setEnergyFromNetwork(con.getEnergyFromNetwork() + energy);
  265. }
  266. public int getAmountOfActiveElements() {
  267. return supplierList.stream().map(object -> object.getModel().getNumberOfActiveElements()).reduce(0,
  268. Integer::sum)
  269. + consumerList.stream().map(object -> object.getModel().getNumberOfActiveElements()).reduce(0,
  270. Integer::sum)
  271. + consumerSelfSuppliedList.stream().map(object -> object.getModel().getNumberOfActiveElements())
  272. .reduce(0, Integer::sum);
  273. }
  274. public int getAmountOfElements() {
  275. return supplierList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0, Integer::sum)
  276. + consumerList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0, Integer::sum)
  277. + consumerSelfSuppliedList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0,
  278. Integer::sum)
  279. + passivNoEnergyList.stream().map(object -> object.getModel().getNumberOfElements()).reduce(0,
  280. Integer::sum);
  281. }
  282. public int getAmountOfConsumer() {
  283. return consumerList.size() + this.consumerSelfSuppliedList.size();
  284. }
  285. public int getAmountOfSupplier() {
  286. return supplierList.size();
  287. }
  288. public int getAmountOfConsumerWithState(HolonObjectState state) {
  289. return (int) (consumerList.stream().filter(con -> con.getState() == state).count()
  290. + consumerSelfSuppliedList.stream().filter(con -> con.getState() == state).count());
  291. }
  292. public int getAmountOfPassiv() {
  293. return passivNoEnergyList.size();
  294. }
  295. public int getAmountOfHolonObjects() {
  296. return getAmountOfConsumer() + getAmountOfSupplier() + getAmountOfPassiv();
  297. }
  298. public float getTotalConsumption() {
  299. float energy = consumerList.stream().map(con -> con.getEnergyFromConsumingElemnets()).reduce(0.f, Float::sum)
  300. + consumerSelfSuppliedList.stream().map(con -> con.getEnergyFromConsumingElemnets()).reduce(0.f,
  301. Float::sum);
  302. energy += supplierList.stream().map(sup -> sup.getEnergySelfConsuming()).reduce(0.f, Float::sum);
  303. return energy;
  304. }
  305. public float getAverageConsumptionInNetworkForHolonObject() {
  306. return getTotalConsumption() / (float) getAmountOfHolonObjects();
  307. }
  308. public float getTotalProduction() {
  309. float energy = consumerList.stream().map(con -> con.getEnergySelfSupplied()).reduce(0.f, Float::sum)
  310. + consumerSelfSuppliedList.stream().map(con -> con.getEnergySelfSupplied()).reduce(0.f, Float::sum);
  311. energy += supplierList.stream().map(sup -> sup.getEnergyProducing()).reduce(0.f, Float::sum);
  312. return energy;
  313. }
  314. public float getAverageProductionInNetworkForHolonObject() {
  315. return getTotalProduction() / (float) getAmountOfHolonObjects();
  316. }
  317. /**
  318. * returns the Varianz in Poduction
  319. *
  320. * @return
  321. */
  322. public float getVarianzInProductionInNetworkForHolonObjects() {
  323. float average = getAverageProductionInNetworkForHolonObject();
  324. float sum = consumerList.stream().map(con -> squared(con.getEnergySelfSupplied() - average)).reduce(0.f,
  325. Float::sum)
  326. + consumerSelfSuppliedList.stream().map(con -> squared(con.getEnergySelfSupplied() - average))
  327. .reduce(0.f, Float::sum)
  328. + supplierList.stream().map(sup -> squared(sup.getEnergyProducing() - average)).reduce(0.f, Float::sum);
  329. return sum / (float) getAmountOfHolonObjects();
  330. }
  331. public float getDeviationInProductionInNetworkForHolonObjects() {
  332. return (float) Math.sqrt(getVarianzInProductionInNetworkForHolonObjects());
  333. }
  334. public float getVarianzInConsumptionInNetworkForHolonObjects() {
  335. float average = getAverageConsumptionInNetworkForHolonObject();
  336. float sum = consumerList.stream().map(con -> squared(con.getEnergyFromConsumingElemnets() - average))
  337. .reduce(0.f, Float::sum)
  338. + consumerSelfSuppliedList.stream().map(con -> squared(con.getEnergyFromConsumingElemnets() - average))
  339. .reduce(0.f, Float::sum)
  340. + supplierList.stream().map(sup -> squared(sup.getEnergySelfConsuming() - average)).reduce(0.f,
  341. Float::sum);
  342. return sum / (float) getAmountOfHolonObjects();
  343. }
  344. public float getDeviationInConsumptionInNetworkForHolonObjects() {
  345. return (float) Math.sqrt(getVarianzInConsumptionInNetworkForHolonObjects());
  346. }
  347. // HelperFunction
  348. public Stream<HolonElement> getElementStream() {
  349. return Stream.concat(consumerList.stream().flatMap(con -> con.getModel().getElements()),
  350. Stream.concat(consumerSelfSuppliedList.stream().flatMap(con -> con.getModel().getElements()),
  351. Stream.concat(supplierList.stream().flatMap(con -> con.getModel().getElements()),
  352. passivNoEnergyList.stream().flatMap(con -> con.getModel().getElements()))));
  353. }
  354. /**
  355. *
  356. * @return a list of energy
  357. */
  358. public Stream<Float> getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork() {
  359. return getElementStream()
  360. .filter(ele -> (ele.flexList.stream().anyMatch(flex -> flex.offered)))
  361. .map(ele -> -ele.getActualEnergy());
  362. }
  363. public Stream<Float> getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork() {
  364. return getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork().filter(value -> (value > 0.f));
  365. }
  366. public Stream<Float> getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork() {
  367. return getListOfEnergyThatIsOfferedByFlexibilitiesInThisNetwork().filter(value -> (value < 0.f))
  368. .map(value -> -value);
  369. }
  370. public float getFlexibilityProductionCapacity() {
  371. return getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork().reduce(0.f, Float::sum);
  372. }
  373. public float getFlexibilityConsumptionCapacity() {
  374. return getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork().reduce(0.f, Float::sum);
  375. }
  376. public int getAmountOfProductionFlexibilities() {
  377. return (int)getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork().count();
  378. }
  379. public int getAmountOfConsumptionFlexibilities() {
  380. return (int)getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork().count();
  381. }
  382. public float getAverageFlexibilityProduction() {
  383. int amount = getAmountOfProductionFlexibilities();
  384. return (amount > 0) ? getFlexibilityProductionCapacity() / (float) amount : 0.f;
  385. }
  386. public float getAverageFlexibilityConsumption() {
  387. int amount = getAmountOfConsumptionFlexibilities();
  388. return (amount > 0) ? getFlexibilityConsumptionCapacity() / (float) amount : 0.f;
  389. }
  390. public float getVarianzInFlexibilitieConsumption() {
  391. float average = getAverageFlexibilityConsumption();
  392. float sum = getListOfEnergyInConsumptionThatIsOfferedByFlexibilitiesInThisNetwork()
  393. .map(energy -> squared(energy - average)).reduce(0.f, Float::sum);
  394. int amountOfFlexibilities = getAmountOfConsumptionFlexibilities();
  395. return (amountOfFlexibilities > 0) ? sum / (float) amountOfFlexibilities : 0.f;
  396. }
  397. public float getVarianzInFlexibilitieProduction() {
  398. float average = getAverageFlexibilityProduction();
  399. float sum = getListOfEnergyInProductionThatIsOfferedByFlexibilitiesInThisNetwork()
  400. .map(energy -> squared(energy - average)).reduce(0.f, Float::sum);
  401. int amountOfFlexibilities = getAmountOfProductionFlexibilities();
  402. return (amountOfFlexibilities > 0) ? sum / (float) amountOfFlexibilities : 0.f;
  403. }
  404. public float getDiviationInFlexibilityConsumption() {
  405. return (float) Math.sqrt(getVarianzInFlexibilitieConsumption());
  406. }
  407. public float getDiviationInFlexibilityProduction() {
  408. return (float) Math.sqrt(getVarianzInFlexibilitieProduction());
  409. }
  410. // Help Function
  411. private float squared(float input) {
  412. return (float) Math.pow(input, 2);
  413. }
  414. }