123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- #if ZED_OPENCV_FOR_UNITY
- using System.Collections;
- using System.Collections.Generic;
- using UnityEngine;
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.DnnModule;
- using OpenCVForUnity.ImgprocModule;
- using sl;
- using System.Linq;
- /// <summary>
- /// Example that shows how to use the custom object detection module from ZED SDK.
- /// Uses Yolov4 from Opencv. Therefore requires the OpenCVForUnity package.
- /// </summary>
- public class ZEDCustomObjDetection : MonoBehaviour
- {
- [TooltipAttribute("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")]
- public string model;
- [TooltipAttribute("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")]
- public string config;
- [TooltipAttribute("Path to a text file with names of classes to label detected objects.")]
- public string classes;
- [TooltipAttribute("Optional list of classes filters. Add classes you want to keep displayed.")]
- public List<string> classesFilter;
- [TooltipAttribute("Confidence threshold.")]
- public float confThreshold = 0.5f;
- [TooltipAttribute("Non-maximum suppression threshold.")]
- public float nmsThreshold = 0.4f;
- private List<string> classNames;
- private List<string> outBlobNames;
- private List<string> outBlobTypes;
- private Net net;
-
- public int inferenceWidth = 416;
-
- public int inferenceHeight = 416;
-
- public float scale = 1.0f;
-
- public Scalar mean = new Scalar(0, 0, 0, 0);
- private Mat bgrMat;
- public ZEDManager zedManager;
-
- /// <summary>
- /// Scene's ZEDToOpenCVRetriever, which creates OpenCV mats and deploys events each time the ZED grabs an image.
- /// It's how we get the image and required matrices that we use to look for markers.
- /// </summary>
- public ZEDToOpenCVRetriever imageRetriever;
- public delegate void onNewIngestCustomODDelegate();
- public event onNewIngestCustomODDelegate OnIngestCustomOD;
- public void Start()
- {
- if (!zedManager) zedManager = FindObjectOfType<ZEDManager>();
- if (zedManager.objectDetectionModel != DETECTION_MODEL.CUSTOM_BOX_OBJECTS)
- {
- Debug.LogWarning("sl.DETECTION_MODEL.CUSTOM_BOX_OBJECTS is mandatory for this sample");
- }
- else
- {
- //We'll listen for updates from a ZEDToOpenCVRetriever, which will call an event whenever it has a new image from the ZED.
- if (!imageRetriever) imageRetriever = ZEDToOpenCVRetriever.GetInstance();
- imageRetriever.OnImageUpdated_LeftRGBA += Run;
- }
- Init();
- }
- public void OnDestroy()
- {
- imageRetriever.OnImageUpdated_LeftRGBA -= Run;
- if (net != null)
- net.Dispose();
- if (bgrMat != null)
- bgrMat.Dispose();
- }
- public void OnValidate()
- {
- if (classesFilter.Count > 0)
- {
- classNames = classesFilter;
- }
- else
- classNames = readClassNames(classes);
- }
- public void Init()
- {
- if (!string.IsNullOrEmpty(classes))
- {
- classNames = readClassNames(classes);
- if (classNames == null)
- {
- Debug.LogError("Classes file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- }
- }
- else if (classesFilter.Count > 0)
- {
- classNames = classesFilter;
- }
- if (string.IsNullOrEmpty(model))
- {
- Debug.LogError("Model file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- }
- else if (string.IsNullOrEmpty(config))
- {
- Debug.LogError("Config file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- }
- else
- {
- net = Dnn.readNet(model, config);
- if (net == null) Debug.LogWarning("network is null");
- outBlobNames = getOutputsNames(net);
- outBlobTypes = getOutputsTypes(net);
- }
- }
- public void Run(Camera cam, Mat camera_matrix, Mat rgbaMat)
- {
- if (!zedManager.IsObjectDetectionRunning) return;
-
- Mat bgrMat = new Mat(rgbaMat.rows(), rgbaMat.cols(), CvType.CV_8UC3);
- Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR);
-
- // Create a 4D blob from a frame.
- Size infSize = new Size(inferenceWidth > 0 ? inferenceWidth : bgrMat.cols(),
- inferenceHeight > 0 ? inferenceHeight : bgrMat.rows());
- Mat blob = Dnn.blobFromImage(bgrMat, scale, infSize, mean, true, false);
- // Run a model.
- net.setInput(blob);
-
- if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
- { // Faster-RCNN or R-FCN
- Imgproc.resize(bgrMat, bgrMat, infSize);
- Mat imInfo = new Mat(1, 3, CvType.CV_32FC1);
- imInfo.put(0, 0, new float[] {
- (float)infSize.height,
- (float)infSize.width,
- 1.6f
- });
- net.setInput(imInfo, "im_info");
- }
- List<Mat> outs = new List<Mat>();
- net.forward(outs, outBlobNames);
- postprocess(rgbaMat, outs, net, Dnn.DNN_BACKEND_OPENCV);
- for (int i = 0; i < outs.Count; i++)
- {
- outs[i].Dispose();
- }
- blob.Dispose();
- }
- /// <summary>
- /// Postprocess the specified frame, outs and net.
- /// </summary>
- /// <param name="frame">Frame.</param>
- /// <param name="outs">Outs.</param>
- /// <param name="net">Net.</param>
- /// <param name="backend">Backend.</param>
- protected virtual void postprocess(Mat frame, List<Mat> outs, Net net, int backend = Dnn.DNN_BACKEND_OPENCV)
- {
- MatOfInt outLayers = net.getUnconnectedOutLayers();
- string outLayerType = outBlobTypes[0];
- List<int> classIdsList = new List<int>();
- List<float> confidencesList = new List<float>();
- List<Rect2d> boxesList = new List<Rect2d>();
- for (int i = 0; i < outs.Count; ++i)
- {
- // Network produces output blob with a shape NxC where N is a number of
- // detected objects and C is a number of classes + 4 where the first 4
- // numbers are [center_x, center_y, width, height]
- //Debug.Log ("outs[i].ToString() "+outs[i].ToString());
- float[] positionData = new float[5];
- float[] confidenceData = new float[outs[i].cols() - 5];
- for (int p = 0; p < outs[i].rows(); p++)
- {
- outs[i].get(p, 0, positionData);
- outs[i].get(p, 5, confidenceData);
- int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I;
- float confidence = confidenceData[maxIdx];
- if (confidence > confThreshold)
- {
- float centerX = positionData[0] * frame.cols();
- float centerY = positionData[1] * frame.rows();
- float width = positionData[2] * frame.cols();
- float height = positionData[3] * frame.rows();
- float left = centerX - width / 2;
- float top = centerY - height / 2;
- classIdsList.Add(maxIdx);
- confidencesList.Add((float)confidence);
- boxesList.Add(new Rect2d(left, top, width, height));
- }
- }
- }
- Dictionary<int, List<int>> class2indices = new Dictionary<int, List<int>>();
- for (int i = 0; i < classIdsList.Count; i++)
- {
- if (confidencesList[i] >= confThreshold)
- {
- if (!class2indices.ContainsKey(classIdsList[i]))
- class2indices.Add(classIdsList[i], new List<int>());
- class2indices[classIdsList[i]].Add(i);
- }
- }
- List<Rect2d> nmsBoxesList = new List<Rect2d>();
- List<float> nmsConfidencesList = new List<float>();
- List<int> nmsClassIdsList = new List<int>();
- foreach (int key in class2indices.Keys)
- {
- List<Rect2d> localBoxesList = new List<Rect2d>();
- List<float> localConfidencesList = new List<float>();
- List<int> classIndicesList = class2indices[key];
- for (int i = 0; i < classIndicesList.Count; i++)
- {
- localBoxesList.Add(boxesList[classIndicesList[i]]);
- localConfidencesList.Add(confidencesList[classIndicesList[i]]);
- }
- using (MatOfRect2d localBoxes = new MatOfRect2d(localBoxesList.ToArray()))
- using (MatOfFloat localConfidences = new MatOfFloat(localConfidencesList.ToArray()))
- using (MatOfInt nmsIndices = new MatOfInt())
- {
- Dnn.NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, nmsIndices);
- for (int i = 0; i < nmsIndices.total(); i++)
- {
- int idx = (int)nmsIndices.get(i, 0)[0];
- nmsBoxesList.Add(localBoxesList[idx]);
- nmsConfidencesList.Add(localConfidencesList[idx]);
- nmsClassIdsList.Add(key);
- }
- }
- }
- boxesList = nmsBoxesList;
- classIdsList = nmsClassIdsList;
- confidencesList = nmsConfidencesList;
-
- ingestCustomData(boxesList, confidencesList, classIdsList);
- }
- private void ingestCustomData(List<Rect2d> boxesList, List<float> confidencesList, List<int> classIdsList)
- {
- List<CustomBoxObjectData> objects_in = new List<CustomBoxObjectData>();
- for (int idx = 0; idx < boxesList.Count; ++idx)
- {
- if (classNames != null && classNames.Count != 0)
- {
- if (classesFilter.Count == 0 || (classIdsList[idx] < (int)classNames.Count && (classesFilter.Contains(classNames[classIdsList[idx]]))))
- {
- CustomBoxObjectData tmp = new CustomBoxObjectData();
- tmp.uniqueObjectID = sl.ZEDCamera.GenerateUniqueID();
- tmp.label = classIdsList[idx];
- tmp.probability = confidencesList[idx];
- Vector2[] bbox = new Vector2[4];
- bbox[0] = new Vector2((float)boxesList[idx].x, (float)boxesList[idx].y);
- bbox[1] = new Vector2((float)boxesList[idx].x + (float)boxesList[idx].width, (float)boxesList[idx].y);
- bbox[2] = new Vector2((float)boxesList[idx].x + (float)boxesList[idx].width, (float)boxesList[idx].y + (float)boxesList[idx].height);
- bbox[3] = new Vector2((float)boxesList[idx].x, (float)boxesList[idx].y + (float)boxesList[idx].height);
- tmp.boundingBox2D = bbox;
- objects_in.Add(tmp);
- }
- }
- }
- zedManager.zedCamera.IngestCustomBoxObjects(objects_in);
- if (OnIngestCustomOD != null)
- OnIngestCustomOD();
- }
- /// <summary>
- /// Reads the class names.
- /// </summary>
- /// <returns>The class names.</returns>
- /// <param name="filename">Filename.</param>
- private List<string> readClassNames(string filename)
- {
- List<string> classNames = new List<string>();
- System.IO.StreamReader cReader = null;
- try
- {
- cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default);
- while (cReader.Peek() >= 0)
- {
- string name = cReader.ReadLine();
- classNames.Add(name);
- }
- }
- catch (System.Exception ex)
- {
- Debug.LogError(ex.Message);
- return null;
- }
- finally
- {
- if (cReader != null)
- cReader.Close();
- }
- return classNames;
- }
- /// <summary>
- /// Gets the outputs names.
- /// </summary>
- /// <returns>The outputs names.</returns>
- /// <param name="net">Net.</param>
- protected List<string> getOutputsNames(Net net)
- {
- List<string> names = new List<string>();
- MatOfInt outLayers = net.getUnconnectedOutLayers();
- for (int i = 0; i < outLayers.total(); ++i)
- {
- names.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_name());
- }
- outLayers.Dispose();
- return names;
- }
- /// <summary>
- /// Gets the outputs types.
- /// </summary>
- /// <returns>The outputs types.</returns>
- /// <param name="net">Net.</param>
- protected virtual List<string> getOutputsTypes(Net net)
- {
- List<string> types = new List<string>();
- MatOfInt outLayers = net.getUnconnectedOutLayers();
- for (int i = 0; i < outLayers.total(); ++i)
- {
- types.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_type());
- }
- outLayers.Dispose();
- return types;
- }
- }
- #endif
|