#if ZED_OPENCV_FOR_UNITY using System.Collections; using System.Collections.Generic; using UnityEngine; using OpenCVForUnity.CoreModule; using OpenCVForUnity.DnnModule; using OpenCVForUnity.ImgprocModule; using sl; using System.Linq; /// /// Example that shows how to use the custom object detection module from ZED SDK. /// Uses Yolov4 from Opencv. Therefore requires the OpenCVForUnity package. /// public class ZEDCustomObjDetection : MonoBehaviour { [TooltipAttribute("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")] public string model; [TooltipAttribute("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")] public string config; [TooltipAttribute("Path to a text file with names of classes to label detected objects.")] public string classes; [TooltipAttribute("Optional list of classes filters. Add classes you want to keep displayed.")] public List classesFilter; [TooltipAttribute("Confidence threshold.")] public float confThreshold = 0.5f; [TooltipAttribute("Non-maximum suppression threshold.")] public float nmsThreshold = 0.4f; private List classNames; private List outBlobNames; private List outBlobTypes; private Net net; public int inferenceWidth = 416; public int inferenceHeight = 416; public float scale = 1.0f; public Scalar mean = new Scalar(0, 0, 0, 0); private Mat bgrMat; public ZEDManager zedManager; /// /// Scene's ZEDToOpenCVRetriever, which creates OpenCV mats and deploys events each time the ZED grabs an image. /// It's how we get the image and required matrices that we use to look for markers. /// public ZEDToOpenCVRetriever imageRetriever; public delegate void onNewIngestCustomODDelegate(); public event onNewIngestCustomODDelegate OnIngestCustomOD; public void Start() { if (!zedManager) zedManager = FindObjectOfType(); if (zedManager.objectDetectionModel != DETECTION_MODEL.CUSTOM_BOX_OBJECTS) { Debug.LogWarning("sl.DETECTION_MODEL.CUSTOM_BOX_OBJECTS is mandatory for this sample"); } else { //We'll listen for updates from a ZEDToOpenCVRetriever, which will call an event whenever it has a new image from the ZED. if (!imageRetriever) imageRetriever = ZEDToOpenCVRetriever.GetInstance(); imageRetriever.OnImageUpdated_LeftRGBA += Run; } Init(); } public void OnDestroy() { imageRetriever.OnImageUpdated_LeftRGBA -= Run; if (net != null) net.Dispose(); if (bgrMat != null) bgrMat.Dispose(); } public void OnValidate() { if (classesFilter.Count > 0) { classNames = classesFilter; } else classNames = readClassNames(classes); } public void Init() { if (!string.IsNullOrEmpty(classes)) { classNames = readClassNames(classes); if (classNames == null) { Debug.LogError("Classes file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } } else if (classesFilter.Count > 0) { classNames = classesFilter; } if (string.IsNullOrEmpty(model)) { Debug.LogError("Model file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else if (string.IsNullOrEmpty(config)) { Debug.LogError("Config file is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { net = Dnn.readNet(model, config); if (net == null) Debug.LogWarning("network is null"); outBlobNames = getOutputsNames(net); outBlobTypes = getOutputsTypes(net); } } public void Run(Camera cam, Mat camera_matrix, Mat rgbaMat) { if (!zedManager.IsObjectDetectionRunning) return; Mat bgrMat = new Mat(rgbaMat.rows(), rgbaMat.cols(), CvType.CV_8UC3); Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); // Create a 4D blob from a frame. Size infSize = new Size(inferenceWidth > 0 ? inferenceWidth : bgrMat.cols(), inferenceHeight > 0 ? inferenceHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, infSize, mean, true, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(bgrMat, bgrMat, infSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)infSize.height, (float)infSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } List outs = new List(); net.forward(outs, outBlobNames); postprocess(rgbaMat, outs, net, Dnn.DNN_BACKEND_OPENCV); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); } /// /// Postprocess the specified frame, outs and net. /// /// Frame. /// Outs. /// Net. /// Backend. protected virtual void postprocess(Mat frame, List outs, Net net, int backend = Dnn.DNN_BACKEND_OPENCV) { MatOfInt outLayers = net.getUnconnectedOutLayers(); string outLayerType = outBlobTypes[0]; List classIdsList = new List(); List confidencesList = new List(); List boxesList = new List(); for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log ("outs[i].ToString() "+outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { float centerX = positionData[0] * frame.cols(); float centerY = positionData[1] * frame.rows(); float width = positionData[2] * frame.cols(); float height = positionData[3] * frame.rows(); float left = centerX - width / 2; float top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } Dictionary> class2indices = new Dictionary>(); for (int i = 0; i < classIdsList.Count; i++) { if (confidencesList[i] >= confThreshold) { if (!class2indices.ContainsKey(classIdsList[i])) class2indices.Add(classIdsList[i], new List()); class2indices[classIdsList[i]].Add(i); } } List nmsBoxesList = new List(); List nmsConfidencesList = new List(); List nmsClassIdsList = new List(); foreach (int key in class2indices.Keys) { List localBoxesList = new List(); List localConfidencesList = new List(); List classIndicesList = class2indices[key]; for (int i = 0; i < classIndicesList.Count; i++) { localBoxesList.Add(boxesList[classIndicesList[i]]); localConfidencesList.Add(confidencesList[classIndicesList[i]]); } using (MatOfRect2d localBoxes = new MatOfRect2d(localBoxesList.ToArray())) using (MatOfFloat localConfidences = new MatOfFloat(localConfidencesList.ToArray())) using (MatOfInt nmsIndices = new MatOfInt()) { Dnn.NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, nmsIndices); for (int i = 0; i < nmsIndices.total(); i++) { int idx = (int)nmsIndices.get(i, 0)[0]; nmsBoxesList.Add(localBoxesList[idx]); nmsConfidencesList.Add(localConfidencesList[idx]); nmsClassIdsList.Add(key); } } } boxesList = nmsBoxesList; classIdsList = nmsClassIdsList; confidencesList = nmsConfidencesList; ingestCustomData(boxesList, confidencesList, classIdsList); } private void ingestCustomData(List boxesList, List confidencesList, List classIdsList) { List objects_in = new List(); for (int idx = 0; idx < boxesList.Count; ++idx) { if (classNames != null && classNames.Count != 0) { if (classesFilter.Count == 0 || (classIdsList[idx] < (int)classNames.Count && (classesFilter.Contains(classNames[classIdsList[idx]])))) { CustomBoxObjectData tmp = new CustomBoxObjectData(); tmp.uniqueObjectID = sl.ZEDCamera.GenerateUniqueID(); tmp.label = classIdsList[idx]; tmp.probability = confidencesList[idx]; Vector2[] bbox = new Vector2[4]; bbox[0] = new Vector2((float)boxesList[idx].x, (float)boxesList[idx].y); bbox[1] = new Vector2((float)boxesList[idx].x + (float)boxesList[idx].width, (float)boxesList[idx].y); bbox[2] = new Vector2((float)boxesList[idx].x + (float)boxesList[idx].width, (float)boxesList[idx].y + (float)boxesList[idx].height); bbox[3] = new Vector2((float)boxesList[idx].x, (float)boxesList[idx].y + (float)boxesList[idx].height); tmp.boundingBox2D = bbox; objects_in.Add(tmp); } } } zedManager.zedCamera.IngestCustomBoxObjects(objects_in); if (OnIngestCustomOD != null) OnIngestCustomOD(); } /// /// Reads the class names. /// /// The class names. /// Filename. private List readClassNames(string filename) { List classNames = new List(); System.IO.StreamReader cReader = null; try { cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default); while (cReader.Peek() >= 0) { string name = cReader.ReadLine(); classNames.Add(name); } } catch (System.Exception ex) { Debug.LogError(ex.Message); return null; } finally { if (cReader != null) cReader.Close(); } return classNames; } /// /// Gets the outputs names. /// /// The outputs names. /// Net. protected List getOutputsNames(Net net) { List names = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { names.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_name()); } outLayers.Dispose(); return names; } /// /// Gets the outputs types. /// /// The outputs types. /// Net. protected virtual List getOutputsTypes(Net net) { List types = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { types.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_type()); } outLayers.Dispose(); return types; } } #endif