package classifier; import de.tu_darmstadt.tk.SmartHomeNetworkSim.core.Packet; import weka.clusterers.HierarchicalClusterer; import weka.core.EuclideanDistance; import weka.core.Instance; import weka.core.Instances; /** * Hierarchical Clustering Approach * @author Andreas T. Meyer-Berg */ public class HierarchicalClustering extends BasicPacketClassifier { /** * Hierarchical cluster which is used */ private HierarchicalClusterer clusterer; /** * Initialize the clusterer */ public HierarchicalClustering() { clusterer = new HierarchicalClusterer(); clusterer.setDistanceFunction(new EuclideanDistance()); clusterer.setNumClusters(16); } @Override public void trainModel(Instances instances) { try { clusterer.buildClusterer(instances); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } @Override public double classifyInstance(Instance instance, Packet origin) throws Exception { /** * Id of the closes cluster centroid */ int x = clusterer.clusterInstance(instance); /** * centroid instance */ /* System.out.print(origin.getTextualRepresentation()+": "); double[] posteriori = clusterer.distributionForInstance(instance); for(int i = 0; i