statistics.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include "statistics.h"
  6. #include <sstream>
  7. #include <SQLiteCpp/SQLiteCpp.h>
  8. #include "statistics_db.h"
  9. #include "statistics.h"
  10. #include "utilities.h"
  11. using namespace Tins;
  12. /**
  13. * Checks if there is a payload and increments payloads counter.
  14. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  15. */
  16. void statistics::checkPayload(const PDU *pdu_l4) {
  17. if(this->getDoExtraTests()) {
  18. // pdu_l4: Tarnsport layer 4
  19. int pktSize = pdu_l4->size();
  20. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  21. int payloadSize = pktSize - headerSize;
  22. if (payloadSize > 0)
  23. payloadCount++;
  24. }
  25. }
  26. /**
  27. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  28. * @param ipAddressSender The source IP.
  29. * @param ipAddressReceiver The destination IP.
  30. * @param tcpPkt The packet to get checked.
  31. */
  32. void statistics::checkTCPChecksum(const std::string &ipAddressSender, const std::string &ipAddressReceiver, TCP tcpPkt) {
  33. if(this->getDoExtraTests()) {
  34. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  35. correctTCPChecksumCount++;
  36. else incorrectTCPChecksumCount++;
  37. }
  38. }
  39. /**
  40. * Calculates entropy of the source and destination IPs in a time interval.
  41. * @param intervalStartTimestamp The timstamp where the interval starts.
  42. * @return a vector: contains source IP entropy and destination IP entropy.
  43. */
  44. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  45. if(this->getDoExtraTests()) {
  46. // TODO: change datastructures
  47. std::vector<long> IPsSrcPktsCounts;
  48. std::vector<long> IPsDstPktsCounts;
  49. std::vector<long> IPsSrcNovelPktsCounts;
  50. std::vector<long> IPsDstNovelPktsCounts;
  51. std::vector<double> IPsSrcProb;
  52. std::vector<double> IPsDstProb;
  53. std::vector<double> IPsSrcNovelProb;
  54. std::vector<double> IPsDstNovelProb;
  55. long pktsSent = 0, pktsReceived = 0, novelPktsSent = 0, novelPktsReceived = 0;
  56. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  57. long IPsSrcPktsCount = 0;
  58. long IPsSrcNovelPktsCount = 0;
  59. if (intervalCumIPStats.count(i->first) == 0) {
  60. IPsSrcPktsCount = i->second.pkts_sent;
  61. IPsSrcNovelPktsCount = i->second.pkts_sent;
  62. IPsSrcNovelPktsCounts.push_back(IPsSrcNovelPktsCount);
  63. novelPktsSent += IPsSrcNovelPktsCount;
  64. } else {
  65. IPsSrcPktsCount = i->second.pkts_sent-intervalCumIPStats[i->first].pkts_sent;
  66. }
  67. if(IPsSrcPktsCount != 0) {
  68. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  69. pktsSent += IPsSrcPktsCount;
  70. }
  71. long IPsDstPktsCount = 0;
  72. long IPsDstNovelPktsCount = 0;
  73. if (intervalCumIPStats.count(i->first) == 0) {
  74. IPsDstPktsCount = i->second.pkts_received;
  75. IPsDstNovelPktsCount = i->second.pkts_received;
  76. IPsDstNovelPktsCounts.push_back(IPsDstNovelPktsCount);
  77. novelPktsReceived += IPsDstNovelPktsCount;
  78. } else {
  79. IPsDstPktsCount = i->second.pkts_received-intervalCumIPStats[i->first].pkts_received;
  80. }
  81. if(IPsDstPktsCount != 0) {
  82. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  83. pktsReceived += IPsDstPktsCount;
  84. }
  85. }
  86. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  87. IPsSrcProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsSent));
  88. }
  89. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  90. IPsDstProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsReceived));
  91. }
  92. for (auto i = IPsSrcNovelPktsCounts.begin(); i != IPsSrcNovelPktsCounts.end(); i++) {
  93. IPsSrcNovelProb.push_back(static_cast<double>(*i) / static_cast<double>(novelPktsSent));
  94. }
  95. for (auto i = IPsDstNovelPktsCounts.begin(); i != IPsDstNovelPktsCounts.end(); i++) {
  96. IPsDstNovelProb.push_back(static_cast<double>(*i) / static_cast<double>(novelPktsReceived));
  97. }
  98. // Calculate IP source entropy
  99. double IPsSrcEntropy = 0;
  100. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  101. if (IPsSrcProb[i] > 0)
  102. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  103. }
  104. // Calculate IP destination entropy
  105. double IPsDstEntropy = 0;
  106. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  107. if (IPsDstProb[i] > 0)
  108. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  109. }
  110. // Calculate IP source novel entropy
  111. double IPsSrcNovelEntropy = 0;
  112. for (unsigned i = 0; i < IPsSrcNovelProb.size(); i++) {
  113. if (IPsSrcNovelProb[i] > 0)
  114. IPsSrcNovelEntropy += -IPsSrcNovelProb[i] * log2(IPsSrcNovelProb[i]);
  115. }
  116. // Calculate IP destination novel entropy
  117. double IPsDstNovelEntropy = 0;
  118. for (unsigned i = 0; i < IPsDstNovelProb.size(); i++) {
  119. if (IPsDstNovelProb[i] > 0)
  120. IPsDstNovelEntropy += -IPsDstNovelProb[i] * log2(IPsDstNovelProb[i]);
  121. }
  122. this->ip_src_novel_count = IPsSrcNovelPktsCounts.size();
  123. this->ip_dst_novel_count = IPsDstNovelPktsCounts.size();
  124. // FIXME: return doubles not floats
  125. std::vector<float> entropies = {static_cast<float>(IPsSrcEntropy), static_cast<float>(IPsDstEntropy), static_cast<float>(IPsSrcNovelEntropy), static_cast<float>(IPsDstNovelEntropy)};
  126. return entropies;
  127. }
  128. else {
  129. return {-1, -1, -1, -1};
  130. }
  131. }
  132. /**
  133. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  134. * @return a vector: contains the cumulative entropies of source and destination IPs
  135. */
  136. std::vector<float> statistics::calculateIPsCumEntropy(){
  137. if(this->getDoExtraTests()) {
  138. std::vector <std::string> IPs;
  139. std::vector <float> IPsSrcProb;
  140. std::vector <float> IPsDstProb;
  141. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  142. IPs.push_back(i->first);
  143. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  144. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  145. }
  146. // Calculate IP source entropy
  147. float IPsSrcEntropy = 0;
  148. for(unsigned i=0; i < IPsSrcProb.size();i++){
  149. if (IPsSrcProb[i] > 0)
  150. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  151. }
  152. // Calculate IP destination entropy
  153. float IPsDstEntropy = 0;
  154. for(unsigned i=0; i < IPsDstProb.size();i++){
  155. if (IPsDstProb[i] > 0)
  156. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  157. }
  158. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  159. return entropies;
  160. }
  161. else {
  162. return {-1, -1};
  163. }
  164. }
  165. /**
  166. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  167. * @param intervalStartTimestamp The timstamp where the interval starts.
  168. */
  169. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  170. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  171. int IPsSrcPktsCount = 0;
  172. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  173. if(*j >= intervalStartTimestamp)
  174. IPsSrcPktsCount++;
  175. }
  176. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  177. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  178. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  179. i->second.max_interval_pkt_rate = interval_pkt_rate;
  180. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  181. i->second.min_interval_pkt_rate = interval_pkt_rate;
  182. }
  183. }
  184. /**
  185. * Calculates the entropies for the count of integer values.
  186. * @param current map containing the values with counts
  187. * @param an old map containing the values with counts (from last iteration)
  188. * @return a vector containing the calculated entropies: entropy of all updated values, entropy of all novel values
  189. */
  190. std::vector<double> statistics::calculateEntropies(std::unordered_map<int, int> &map, std::unordered_map<int, int> &old) {
  191. std::vector<double> counts;
  192. int count_total = 0;
  193. double entropy = 0.0;
  194. std::vector<double> novel_counts;
  195. int novel_count_total = 0;
  196. double novel_entropy = 0.0;
  197. // iterate over all values
  198. for (auto iter: map) {
  199. if (old.count(iter.first) == 0) {
  200. // count novel values
  201. double novel_count = static_cast<double>(iter.second);
  202. counts.push_back(novel_count);
  203. count_total += novel_count;
  204. novel_counts.push_back(novel_count);
  205. novel_count_total += novel_count;
  206. } else if (old.count(iter.first) != map.count(iter.first)) {
  207. // count all increased values
  208. double count = static_cast<double>(iter.second-old[iter.first]);
  209. if (count != 0.0) {
  210. counts.push_back(count);
  211. count_total += count;
  212. }
  213. }
  214. }
  215. // calculate entropy
  216. for (auto count: counts) {
  217. double prob = count / static_cast<double>(count_total);
  218. entropy += -1 * prob * log2(prob);
  219. }
  220. // calculate novelty entropy
  221. for (auto novel_count: novel_counts) {
  222. double novel_prob = novel_count / static_cast<double>(novel_count_total);
  223. novel_entropy += -1 * novel_prob * log2(novel_prob);
  224. }
  225. return {entropy, novel_entropy};
  226. }
  227. /**
  228. * Registers statistical data for a time interval.
  229. * @param intervalStartTimestamp The timstamp where the interval starts.
  230. * @param intervalEndTimestamp The timstamp where the interval ends.
  231. * @param previousPacketCount The total number of packets in last interval.
  232. */
  233. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  234. // Add packet rate for each IP to ip_statistics map
  235. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  236. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  237. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  238. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  239. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  240. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  241. // TODO: check with carlos if first and last packet timestamps are alright
  242. interval_statistics[lastPktTimestamp_s].start = std::to_string(intervalStartTimestamp.count());
  243. interval_statistics[lastPktTimestamp_s].end = std::to_string(intervalEndTimestamp.count());
  244. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  245. interval_statistics[lastPktTimestamp_s].pkt_rate = static_cast<float>(interval_statistics[lastPktTimestamp_s].pkts_count) / (static_cast<double>(interval.count()) / 1000000);
  246. interval_statistics[lastPktTimestamp_s].kbytes = static_cast<float>(sumPacketSize - intervalCumSumPktSize) / 1024;
  247. interval_statistics[lastPktTimestamp_s].kbyte_rate = interval_statistics[lastPktTimestamp_s].kbytes / (static_cast<double>(interval.count()) / 1000000);
  248. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  249. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  250. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  251. interval_statistics[lastPktTimestamp_s].novel_ip_src_count = this->ip_src_novel_count;
  252. interval_statistics[lastPktTimestamp_s].novel_ip_dst_count = this->ip_dst_novel_count;
  253. interval_statistics[lastPktTimestamp_s].novel_ttl_count = static_cast<int>(ttl_values.size()) - intervalCumNovelTTLCount;
  254. interval_statistics[lastPktTimestamp_s].novel_win_size_count = static_cast<int>(win_values.size()) - intervalCumNovelWinSizeCount;
  255. interval_statistics[lastPktTimestamp_s].novel_tos_count = static_cast<int>(tos_values.size()) - intervalCumNovelToSCount;
  256. interval_statistics[lastPktTimestamp_s].novel_mss_count = static_cast<int>(mss_values.size()) - intervalCumNovelMSSCount;
  257. interval_statistics[lastPktTimestamp_s].novel_port_count = static_cast<int>(port_values.size()) - intervalCumNovelPortCount;
  258. interval_statistics[lastPktTimestamp_s].ttl_entropies = calculateEntropies(ttl_values, intervalCumTTLValues);
  259. interval_statistics[lastPktTimestamp_s].win_size_entropies = calculateEntropies(win_values, intervalCumWinSizeValues);
  260. interval_statistics[lastPktTimestamp_s].tos_entropies = calculateEntropies(tos_values, intervalCumTosValues);
  261. interval_statistics[lastPktTimestamp_s].mss_entropies = calculateEntropies(mss_values, intervalCumMSSValues);
  262. interval_statistics[lastPktTimestamp_s].port_entropies = calculateEntropies(port_values, intervalCumPortValues);
  263. intervalPayloadCount = payloadCount;
  264. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  265. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  266. intervalCumPktCount = packetCount;
  267. intervalCumSumPktSize = sumPacketSize;
  268. intervalCumNovelIPCount = static_cast<int>(ip_statistics.size());
  269. intervalCumNovelTTLCount = static_cast<int>(ttl_values.size());
  270. intervalCumNovelWinSizeCount = static_cast<int>(win_values.size());
  271. intervalCumNovelToSCount =static_cast<int>(tos_values.size());
  272. intervalCumNovelMSSCount = static_cast<int>(mss_values.size());
  273. intervalCumNovelPortCount = static_cast<int>(port_values.size());
  274. intervalCumIPStats = ip_statistics;
  275. intervalCumTTLValues = ttl_values;
  276. intervalCumWinSizeValues = win_values;
  277. intervalCumTosValues = tos_values;
  278. intervalCumMSSValues = mss_values;
  279. intervalCumPortValues = port_values;
  280. if(ipEntopies.size()>1){
  281. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  282. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  283. interval_statistics[lastPktTimestamp_s].ip_src_novel_entropy = ipEntopies[2];
  284. interval_statistics[lastPktTimestamp_s].ip_dst_novel_entropy = ipEntopies[3];
  285. }
  286. if(ipCumEntopies.size()>1){
  287. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  288. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  289. }
  290. }
  291. /**
  292. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  293. * Increments the counter packets_A_B or packets_B_A.
  294. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  295. * @param ipAddressSender The sender IP address.
  296. * @param sport The source port.
  297. * @param ipAddressReceiver The receiver IP address.
  298. * @param dport The destination port.
  299. * @param timestamp The timestamp of the packet.
  300. */
  301. void statistics::addConvStat(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  302. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  303. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  304. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  305. if (conv_statistics.count(f1)>0){
  306. conv_statistics[f1].pkts_count++;
  307. if(conv_statistics[f1].pkts_count<=3)
  308. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  309. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  310. }
  311. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  312. else{
  313. conv_statistics[f2].pkts_count++;
  314. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  315. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  316. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  317. }
  318. }
  319. /**
  320. * Registers statistical data for a sent packet in a given extended conversation (two IPs, two ports, protocol).
  321. * Increments the counter packets_A_B or packets_B_A.
  322. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  323. * Updates all other statistics of conv_statistics_extended
  324. * @param ipAddressSender The sender IP address.
  325. * @param sport The source port.
  326. * @param ipAddressReceiver The receiver IP address.
  327. * @param dport The destination port.
  328. * @param protocol The used protocol.
  329. * @param timestamp The timestamp of the packet.
  330. */
  331. void statistics::addConvStatExt(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport,const std::string &protocol, std::chrono::microseconds timestamp){
  332. if(this->getDoExtraTests()) {
  333. convWithProt f1 = {ipAddressReceiver, dport, ipAddressSender, sport, protocol};
  334. convWithProt f2 = {ipAddressSender, sport, ipAddressReceiver, dport, protocol};
  335. convWithProt f;
  336. // if there already exists a communication interval for the specified conversation
  337. if (conv_statistics_extended.count(f1) > 0 || conv_statistics_extended.count(f2) > 0){
  338. // find out which direction of conversation is contained in conv_statistics_extended
  339. if (conv_statistics_extended.count(f1) > 0)
  340. f = f1;
  341. else
  342. f = f2;
  343. // increase pkts count and check on delay
  344. conv_statistics_extended[f].pkts_count++;
  345. if (conv_statistics_extended[f].pkts_timestamp.size()>0 && conv_statistics_extended[f].pkts_count<=3)
  346. conv_statistics_extended[f].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics_extended[f].pkts_timestamp.back()));
  347. conv_statistics_extended[f].pkts_timestamp.push_back(timestamp);
  348. // if the time difference has exceeded the threshold, create a new interval with this message
  349. if (timestamp - conv_statistics_extended[f].comm_intervals.back().end > (std::chrono::microseconds) ((unsigned long) COMM_INTERVAL_THRESHOLD)) { // > or >= ?
  350. commInterval new_interval = {timestamp, timestamp, 1};
  351. conv_statistics_extended[f].comm_intervals.push_back(new_interval);
  352. }
  353. // otherwise, set the time of the last interval message to the current timestamp and increase interval packet count by 1
  354. else{
  355. conv_statistics_extended[f].comm_intervals.back().end = timestamp;
  356. conv_statistics_extended[f].comm_intervals.back().pkts_count++;
  357. }
  358. }
  359. // if there does not exist a communication interval for the specified conversation
  360. else{
  361. // add initial interval entry for this conversation
  362. commInterval initial_interval = {timestamp, timestamp, 1};
  363. entry_convStatExt entry;
  364. entry.comm_intervals.push_back(initial_interval);
  365. entry.pkts_count = 1;
  366. entry.pkts_timestamp.push_back(timestamp);
  367. conv_statistics_extended[f2] = entry;
  368. }
  369. }
  370. }
  371. /**
  372. * Aggregate the collected information about all communication intervals within conv_statistics_extended of every conversation.
  373. * Do this by computing the average packet rate per interval and the average time between intervals.
  374. * Also compute average interval duration and total communication duration (i.e. last_msg.time - first_msg.time)
  375. */
  376. void statistics::createCommIntervalStats(){
  377. // iterate over all <convWithProt, entry_convStatExt> pairs
  378. for (auto &cur_elem : conv_statistics_extended) {
  379. entry_convStatExt &entry = cur_elem.second;
  380. std::vector<commInterval> &intervals = entry.comm_intervals;
  381. // if there is only one interval, the time between intervals cannot be computed and is therefore set to 0
  382. if (intervals.size() == 1){
  383. double interval_duration = (double) (intervals[0].end - intervals[0].start).count() / (double) 1e6;
  384. entry.avg_int_pkts_count = (double) intervals[0].pkts_count;
  385. entry.avg_time_between_ints = (double) 0;
  386. entry.avg_interval_time = interval_duration;
  387. }
  388. // If there is more than one interval, compute the specified averages
  389. else if (intervals.size() > 1){
  390. long summed_pkts_count = intervals[0].pkts_count;
  391. std::chrono::microseconds time_between_ints_sum = (std::chrono::microseconds) 0;
  392. std::chrono::microseconds summed_int_duration = intervals[0].end - intervals[0].start;
  393. for (std::size_t i = 1; i < intervals.size(); i++) {
  394. summed_pkts_count += intervals[i].pkts_count;
  395. summed_int_duration += intervals[i].end - intervals[i].start;
  396. time_between_ints_sum += intervals[i].start - intervals[i - 1].end;
  397. }
  398. entry.avg_int_pkts_count = summed_pkts_count / ((double) intervals.size());
  399. entry.avg_time_between_ints = (time_between_ints_sum.count() / (double) (intervals.size() - 1)) / (double) 1e6;
  400. entry.avg_interval_time = (summed_int_duration.count() / (double) intervals.size()) / (double) 1e6;
  401. }
  402. entry.total_comm_duration = (double) (entry.pkts_timestamp.back() - entry.pkts_timestamp.front()).count() / (double) 1e6;
  403. }
  404. }
  405. /**
  406. * Increments the packet counter for the given IP address and MSS value.
  407. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  408. * @param mssValue The MSS value of the packet.
  409. */
  410. void statistics::incrementMSScount(const std::string &ipAddress, int mssValue) {
  411. mss_values[mssValue]++;
  412. mss_distribution[{ipAddress, mssValue}]++;
  413. }
  414. /**
  415. * Increments the packet counter for the given IP address and window size.
  416. * @param ipAddress The IP address whose window size packet counter should be incremented.
  417. * @param winSize The window size of the packet.
  418. */
  419. void statistics::incrementWinCount(const std::string &ipAddress, int winSize) {
  420. win_values[winSize]++;
  421. win_distribution[{ipAddress, winSize}]++;
  422. }
  423. /**
  424. * Increments the packet counter for the given IP address and TTL value.
  425. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  426. * @param ttlValue The TTL value of the packet.
  427. */
  428. void statistics::incrementTTLcount(const std::string &ipAddress, int ttlValue) {
  429. ttl_values[ttlValue]++;
  430. ttl_distribution[{ipAddress, ttlValue}]++;
  431. }
  432. /**
  433. * Increments the packet counter for the given IP address and ToS value.
  434. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  435. * @param tosValue The ToS value of the packet.
  436. */
  437. void statistics::incrementToScount(const std::string &ipAddress, int tosValue) {
  438. tos_values[tosValue]++;
  439. tos_distribution[{ipAddress, tosValue}]++;
  440. }
  441. /**
  442. * Increments the protocol counter for the given IP address and protocol.
  443. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  444. * @param protocol The protocol of the packet.
  445. */
  446. void statistics::incrementProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  447. protocol_distribution[{ipAddress, protocol}].count++;
  448. }
  449. /**
  450. * Returns the number of packets seen for the given IP address and protocol.
  451. * @param ipAddress The IP address whose packet count is wanted.
  452. * @param protocol The protocol whose packet count is wanted.
  453. */
  454. int statistics::getProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  455. return protocol_distribution[{ipAddress, protocol}].count;
  456. }
  457. /**
  458. * Increases the byte counter for the given IP address and protocol.
  459. * @param ipAddress The IP address whose protocol byte counter should be increased.
  460. * @param protocol The protocol of the packet.
  461. * @param byteSent The packet's size.
  462. */
  463. void statistics::increaseProtocolByteCount(const std::string &ipAddress, const std::string &protocol, long bytesSent) {
  464. protocol_distribution[{ipAddress, protocol}].byteCount += bytesSent;
  465. }
  466. /**
  467. * Returns the number of bytes seen for the given IP address and protocol.
  468. * @param ipAddress The IP address whose byte count is wanted.
  469. * @param protocol The protocol whose byte count is wanted.
  470. * @return a float: The number of bytes
  471. */
  472. float statistics::getProtocolByteCount(const std::string &ipAddress, const std::string &protocol) {
  473. return protocol_distribution[{ipAddress, protocol}].byteCount;
  474. }
  475. /**
  476. * Increments the packet counter for
  477. * - the given sender IP address with outgoing port and
  478. * - the given receiver IP address with incoming port.
  479. * @param ipAddressSender The IP address of the packet sender.
  480. * @param outgoingPort The port used by the sender.
  481. * @param ipAddressReceiver The IP address of the packet receiver.
  482. * @param incomingPort The port used by the receiver.
  483. */
  484. void statistics::incrementPortCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  485. int incomingPort, const std::string &protocol) {
  486. port_values[outgoingPort]++;
  487. port_values[incomingPort]++;
  488. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].count++;
  489. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].count++;
  490. }
  491. /**
  492. * Increases the packet byte counter for
  493. * - the given sender IP address with outgoing port and
  494. * - the given receiver IP address with incoming port.
  495. * @param ipAddressSender The IP address of the packet sender.
  496. * @param outgoingPort The port used by the sender.
  497. * @param ipAddressReceiver The IP address of the packet receiver.
  498. * @param incomingPort The port used by the receiver.
  499. * @param byteSent The packet's size.
  500. */
  501. void statistics::increasePortByteCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  502. int incomingPort, long bytesSent, const std::string &protocol) {
  503. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].byteCount += bytesSent;
  504. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].byteCount += bytesSent;
  505. }
  506. /**
  507. * Increments the packet counter for
  508. * - the given sender MAC address and
  509. * - the given receiver MAC address.
  510. * @param srcMac The MAC address of the packet sender.
  511. * @param dstMac The MAC address of the packet receiver.
  512. * @param typeNumber The payload type number of the packet.
  513. */
  514. void statistics::incrementUnrecognizedPDUCount(const std::string &srcMac, const std::string &dstMac, uint32_t typeNumber,
  515. const std::string &timestamp) {
  516. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].count++;
  517. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].timestamp_last_occurrence = timestamp;
  518. }
  519. /**
  520. * Creates a new statistics object.
  521. */
  522. statistics::statistics(std::string resourcePath) {;
  523. this->resourcePath = resourcePath;
  524. }
  525. /**
  526. * Stores the assignment IP address -> MAC address.
  527. * @param ipAddress The IP address belonging to the given MAC address.
  528. * @param macAddress The MAC address belonging to the given IP address.
  529. */
  530. void statistics::assignMacAddress(const std::string &ipAddress, const std::string &macAddress) {
  531. ip_mac_mapping[ipAddress] = macAddress;
  532. }
  533. /**
  534. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  535. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  536. * @param ipAddressSender The IP address of the packet sender.
  537. * @param ipAddressReceiver The IP address of the packet receiver.
  538. * @param bytesSent The packet's size.
  539. */
  540. void statistics::addIpStat_packetSent(const std::string &ipAddressSender, const std::string &ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  541. // Adding IP as a sender for first time
  542. if(ip_statistics[ipAddressSender].pkts_sent==0){
  543. // Add the IP class
  544. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  545. }
  546. // Adding IP as a receiver for first time
  547. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  548. // Add the IP class
  549. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  550. }
  551. // Update stats for packet sender
  552. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  553. ip_statistics[ipAddressSender].pkts_sent++;
  554. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  555. // Update stats for packet receiver
  556. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  557. ip_statistics[ipAddressReceiver].pkts_received++;
  558. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  559. if(this->getDoExtraTests()) {
  560. // Increment Degrees for sender and receiver, if Sender sends its first packet to this receiver
  561. std::unordered_set<std::string>::const_iterator found_receiver = contacted_ips[ipAddressSender].find(ipAddressReceiver);
  562. if(found_receiver == contacted_ips[ipAddressSender].end()){
  563. // Receiver is NOT contained in the List of IPs, that the Sender has contacted, therefore this is the first packet in this direction
  564. ip_statistics[ipAddressSender].out_degree++;
  565. ip_statistics[ipAddressReceiver].in_degree++;
  566. // Increment overall_degree only if this is the first packet for the connection (both directions)
  567. // Therefore check, whether Receiver has contacted Sender before
  568. std::unordered_set<std::string>::const_iterator sender_contacted = contacted_ips[ipAddressReceiver].find(ipAddressSender);
  569. if(sender_contacted == contacted_ips[ipAddressReceiver].end()){
  570. ip_statistics[ipAddressSender].overall_degree++;
  571. ip_statistics[ipAddressReceiver].overall_degree++;
  572. }
  573. contacted_ips[ipAddressSender].insert(ipAddressReceiver);
  574. }
  575. }
  576. }
  577. /**
  578. * Setter for the timestamp_firstPacket field.
  579. * @param ts The timestamp of the first packet in the PCAP file.
  580. */
  581. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  582. timestamp_firstPacket = ts;
  583. }
  584. /**
  585. * Setter for the timestamp_lastPacket field.
  586. * @param ts The timestamp of the last packet in the PCAP file.
  587. */
  588. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  589. timestamp_lastPacket = ts;
  590. }
  591. /**
  592. * Getter for the timestamp_firstPacket field.
  593. */
  594. Tins::Timestamp statistics::getTimestampFirstPacket() {
  595. return timestamp_firstPacket;
  596. }
  597. /**
  598. * Getter for the timestamp_lastPacket field.
  599. */
  600. Tins::Timestamp statistics::getTimestampLastPacket() {
  601. return timestamp_lastPacket;
  602. }
  603. /**
  604. * Getter for the packetCount field.
  605. */
  606. int statistics::getPacketCount() {
  607. return packetCount;
  608. }
  609. /**
  610. * Getter for the sumPacketSize field.
  611. */
  612. int statistics::getSumPacketSize() {
  613. return sumPacketSize;
  614. }
  615. /**
  616. * Returns the average packet size.
  617. * @return a float indicating the average packet size in kbytes.
  618. */
  619. float statistics::getAvgPacketSize() const {
  620. // AvgPktSize = (Sum of all packet sizes / #Packets)
  621. return (sumPacketSize / packetCount) / 1024;
  622. }
  623. /**
  624. * Adds the size of a packet (to be used to calculate the avg. packet size).
  625. * @param packetSize The size of the current packet in bytes.
  626. */
  627. void statistics::addPacketSize(uint32_t packetSize) {
  628. sumPacketSize += ((float) packetSize);
  629. }
  630. /**
  631. * Setter for the doExtraTests field.
  632. */
  633. void statistics::setDoExtraTests(bool var) {
  634. doExtraTests = var;
  635. }
  636. /**
  637. * Getter for the doExtraTests field.
  638. */
  639. bool statistics::getDoExtraTests() {
  640. return doExtraTests;
  641. }
  642. /**
  643. * Calculates the capture duration.
  644. * @return a formatted string HH:MM:SS.mmmmmm with
  645. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  646. */
  647. std::string statistics::getCaptureDurationTimestamp() const {
  648. // Calculate duration
  649. timeval fp, lp, d;
  650. fp.tv_sec = timestamp_firstPacket.seconds();
  651. fp.tv_usec = timestamp_firstPacket.microseconds();
  652. lp.tv_sec = timestamp_lastPacket.seconds();
  653. lp.tv_usec = timestamp_lastPacket.microseconds();
  654. timersub(&lp, &fp, &d);
  655. long int hour = d.tv_sec / 3600;
  656. long int remainder = (d.tv_sec - hour * 3600);
  657. long int minute = remainder / 60;
  658. long int second = (remainder - minute * 60) % 60;
  659. long int microseconds = d.tv_usec;
  660. // Build desired output format: YYYY-mm-dd hh:mm:ss
  661. char out[64];
  662. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  663. return std::string(out);
  664. }
  665. /**
  666. * Calculates the capture duration.
  667. * @return a formatted string SS.mmmmmm with
  668. * S: seconds (UNIX time), mmmmmm: microseconds
  669. */
  670. float statistics::getCaptureDurationSeconds() const {
  671. timeval fp, lp, d;
  672. fp.tv_sec = timestamp_firstPacket.seconds();
  673. fp.tv_usec = timestamp_firstPacket.microseconds();
  674. lp.tv_sec = timestamp_lastPacket.seconds();
  675. lp.tv_usec = timestamp_lastPacket.microseconds();
  676. timersub(&lp, &fp, &d);
  677. char buf[64];
  678. snprintf(buf, sizeof(buf), "%u.%06u", static_cast<uint>(d.tv_sec), static_cast<uint>(d.tv_usec));
  679. return std::stof(std::string(buf));
  680. }
  681. /**
  682. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  683. * @param seconds
  684. * @param microseconds
  685. * @return a formatted string Y-m-d H:M:S.m with
  686. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  687. */
  688. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  689. timeval tv;
  690. tv.tv_sec = seconds;
  691. tv.tv_usec = microseconds;
  692. char tmbuf[20], buf[64];
  693. auto nowtm = gmtime(&(tv.tv_sec));
  694. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  695. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, static_cast<uint>(tv.tv_usec));
  696. return std::string(buf);
  697. }
  698. /**
  699. * Calculates the statistics for a given IP address.
  700. * @param ipAddress The IP address whose statistics should be calculated.
  701. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  702. */
  703. ip_stats statistics::getStatsForIP(const std::string &ipAddress) {
  704. float duration = getCaptureDurationSeconds();
  705. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  706. ip_stats s;
  707. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  708. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  709. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  710. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  711. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  712. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  713. return s;
  714. }
  715. int statistics::getDefaultInterval() {
  716. return this->default_interval;
  717. }
  718. void statistics::setDefaultInterval(int interval) {
  719. this->default_interval = interval;
  720. }
  721. /**
  722. * Increments the packet counter.
  723. */
  724. void statistics::incrementPacketCount() {
  725. packetCount++;
  726. }
  727. /**
  728. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  729. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  730. */
  731. void statistics::printStats(const std::string &ipAddress) {
  732. std::stringstream ss;
  733. ss << std::endl;
  734. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  735. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  736. ss << "#Packets: " << packetCount << std::endl;
  737. ss << std::endl;
  738. // Print IP address specific statistics only if IP address was given
  739. if (ipAddress != "") {
  740. entry_ipStat e = ip_statistics[ipAddress];
  741. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  742. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  743. ss << "KBytes received: " << e.kbytes_received << std::endl;
  744. ss << "Packets sent: " << e.pkts_sent << std::endl;
  745. ss << "Packets received: " << e.pkts_received << "\n\n";
  746. ip_stats is = getStatsForIP(ipAddress);
  747. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  748. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  749. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  750. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  751. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  752. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  753. }
  754. std::cout << ss.str();
  755. }
  756. /**
  757. * Derives general PCAP file statistics from the collected statistical data and
  758. * writes all data into a SQLite database, located at database_path.
  759. * @param database_path The path of the SQLite database file ending with .sqlite3.
  760. */
  761. void statistics::writeToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  762. // Generate general file statistics
  763. float duration = getCaptureDurationSeconds();
  764. long sumPacketsSent = 0, senderCountIP = 0;
  765. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  766. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  767. sumPacketsSent += i->second.pkts_sent;
  768. // Consumed bandwith (bytes) for sending packets
  769. sumBandwidthIn += (i->second.kbytes_received / duration);
  770. sumBandwidthOut += (i->second.kbytes_sent / duration);
  771. senderCountIP++;
  772. }
  773. float avgPacketRate = (packetCount / duration);
  774. long avgPacketSize = getAvgPacketSize();
  775. if(senderCountIP>0) {
  776. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  777. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  778. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  779. // Create database and write information
  780. statistics_db db(database_path, resourcePath);
  781. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  782. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  783. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  784. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  785. avgBandwidthOutInKBits, doExtraTests);
  786. db.writeStatisticsIP(ip_statistics);
  787. db.writeStatisticsTTL(ttl_distribution);
  788. db.writeStatisticsIpMac(ip_mac_mapping);
  789. db.writeStatisticsDegree(ip_statistics);
  790. db.writeStatisticsPorts(ip_ports);
  791. db.writeStatisticsProtocols(protocol_distribution);
  792. db.writeStatisticsMSS(mss_distribution);
  793. db.writeStatisticsToS(tos_distribution);
  794. db.writeStatisticsWin(win_distribution);
  795. db.writeStatisticsConv(conv_statistics);
  796. db.writeStatisticsConvExt(conv_statistics_extended);
  797. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  798. db.writeDbVersion();
  799. db.writeStatisticsUnrecognizedPDUs(unrecognized_PDUs);
  800. }
  801. else {
  802. // Tinslib failed to recognize the types of the packets in the input PCAP
  803. std::cerr<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  804. return;
  805. }
  806. }
  807. void statistics::writeIntervalsToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  808. statistics_db db(database_path, resourcePath);
  809. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  810. }