12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079 |
- import os
- import random
- import time
- from math import sqrt, ceil, log
- from operator import itemgetter
- # TODO: double check this import
- # does it complain because libpcapreader is not a .py?
- import ID2TLib.libpcapreader as pr
- import matplotlib
- import Core.StatsDatabase as statsDB
- import ID2TLib.PcapFile as PcapFile
- import ID2TLib.Utility as Util
- matplotlib.use('Agg', force=True)
- import matplotlib.pyplot as plt
- class Statistics:
- def __init__(self, pcap_file: PcapFile.PcapFile):
- """
- Creates a new Statistics object.
- :param pcap_file: A reference to the PcapFile object
- """
- # Fields
- self.pcap_filepath = pcap_file.pcap_file_path
- self.pcap_proc = None
- self.do_extra_tests = False
- self.file_info = None
- # Create folder for statistics database if required
- self.path_db = pcap_file.get_db_path()
- path_dir = os.path.dirname(self.path_db)
- if not os.path.isdir(path_dir):
- os.makedirs(path_dir)
- # Class instances
- self.stats_db = statsDB.StatsDatabase(self.path_db)
- def load_pcap_statistics(self, flag_write_file: bool, flag_recalculate_stats: bool, flag_print_statistics: bool,
- flag_non_verbose: bool):
- """
- Loads the PCAP statistics for the file specified by pcap_filepath. If the database is not existing yet, the
- statistics are calculated by the PCAP file processor and saved into the newly created database. Otherwise the
- statistics are gathered directly from the existing database.
- :param flag_write_file: Indicates whether the statistics should be written addiotionally into a text file (True)
- or not (False)
- :param flag_recalculate_stats: Indicates whether eventually existing statistics should be recalculated
- :param flag_print_statistics: Indicates whether the gathered basic statistics should be printed to the terminal
- :param flag_non_verbose: Indicates whether certain prints should be made or not, to reduce terminal clutter
- """
- # Load pcap and get loading time
- time_start = time.clock()
- # Inform user about recalculation of statistics and its reason
- if flag_recalculate_stats:
- print("Flag -r/--recalculate found. Recalculating statistics.")
- # Recalculate statistics if database does not exist OR param -r/--recalculate is provided
- if (not self.stats_db.get_db_exists()) or flag_recalculate_stats or self.stats_db.get_db_outdated():
- self.pcap_proc = pr.pcap_processor(self.pcap_filepath, str(self.do_extra_tests))
- self.pcap_proc.collect_statistics()
- self.pcap_proc.write_to_database(self.path_db)
- outstring_datasource = "by PCAP file processor."
- # only print summary of new db if -s flag not set
- if not flag_print_statistics and not flag_non_verbose:
- self.stats_summary_new_db()
- else:
- outstring_datasource = "from statistics database."
- # Load statistics from database
- self.file_info = self.stats_db.get_file_info()
- time_end = time.clock()
- print("Loaded file statistics in " + str(time_end - time_start)[:4] + " sec " + outstring_datasource)
- # Write statistics if param -e/--export provided
- if flag_write_file:
- self.write_statistics_to_file()
- # Print statistics if param -s/--statistics provided
- if flag_print_statistics:
- self.print_statistics()
- def get_file_information(self):
- """
- Returns a list of tuples, each containing a information of the file.
- :return: a list of tuples, each consisting of (description, value, unit), where unit is optional.
- """
- pdu_count = self.process_db_query("SELECT SUM(pktCount) FROM unrecognized_pdus")
- pdu_share = pdu_count / self.get_packet_count() * 100
- last_pdu_timestamp = self.process_db_query(
- "SELECT MAX(timestampLastOccurrence) FROM unrecognized_pdus")
- return [("Pcap file path", self.pcap_filepath),
- ("Total packet count", self.get_packet_count(), "packets"),
- ("Recognized packets", self.get_packet_count() - pdu_count, "packets"),
- ("Unrecognized packets", pdu_count, "PDUs"),
- ("% Recognized packets", 100 - pdu_share, "%"),
- ("% Unrecognized packets", pdu_share, "%"),
- ("Last unknown PDU", last_pdu_timestamp),
- ("Capture duration", self.get_capture_duration(), "seconds"),
- ("Capture start", "\t" + str(self.get_pcap_timestamp_start())),
- ("Capture end", "\t" + str(self.get_pcap_timestamp_end()))]
- def get_general_file_statistics(self):
- """
- Returns a list of tuples, each containing a file statistic.
- :return: a list of tuples, each consisting of (description, value, unit).
- """
- return [("Avg. packet rate", self.file_info['avgPacketRate'], "packets/sec"),
- ("Avg. packet size", self.file_info['avgPacketSize'], "kbytes"),
- ("Avg. packets sent", self.file_info['avgPacketsSentPerHost'], "packets"),
- ("Avg. bandwidth in", self.file_info['avgBandwidthIn'], "kbit/s"),
- ("Avg. bandwidth out", self.file_info['avgBandwidthOut'], "kbit/s")]
- @staticmethod
- def write_list(desc_val_unit_list, func, line_ending="\n"):
- """
- Takes a list of tuples (statistic name, statistic value, unit) as input, generates a string of these three
- values and applies the function func on this string.
- Before generating the string, it identifies text containing a float number, casts the string to a
- float and rounds the value to two decimal digits.
- :param desc_val_unit_list: The list of tuples consisting of (description, value, unit)
- :param func: The function to be applied to each generated string
- :param line_ending: The formatting string to be applied at the end of each string
- """
- for entry in desc_val_unit_list:
- # Convert text containing float into float
- (description, value) = entry[0:2]
- if isinstance(value, str) and "." in value:
- try:
- value = float(value)
- except ValueError:
- pass # do nothing -> value was not a float
- # round float
- if isinstance(value, float):
- value = round(value, 4)
- # write into file
- if len(entry) == 3:
- unit = entry[2]
- func(description + ":\t" + str(value) + " " + unit + line_ending)
- else:
- func(description + ":\t" + str(value) + line_ending)
- def print_statistics(self):
- """
- Prints the basic file statistics to the terminal.
- """
- print("\nPCAP FILE INFORMATION ------------------------------")
- Statistics.write_list(self.get_file_information(), print, "")
- print("\nGENERAL FILE STATISTICS ----------------------------")
- Statistics.write_list(self.get_general_file_statistics(), print, "")
- print("\n")
- @staticmethod
- def calculate_entropy(frequency: list, normalized: bool = False):
- """
- Calculates entropy and normalized entropy of list of elements that have specific frequency
- :param frequency: The frequency of the elements.
- :param normalized: Calculate normalized entropy
- :return: entropy or (entropy, normalized entropy)
- """
- entropy, normalized_ent, n = 0, 0, 0
- sum_freq = sum(frequency)
- for i, x in enumerate(frequency):
- p_x = float(frequency[i] / sum_freq)
- if p_x > 0:
- n += 1
- entropy += - p_x * log(p_x, 2)
- if normalized:
- if log(n) > 0:
- normalized_ent = entropy / log(n, 2)
- return entropy, normalized_ent
- else:
- return entropy
- def calculate_complement_packet_rates(self, pps):
- """
- Calculates the complement packet rates of the background traffic packet rates for each interval.
- Then normalize it to maximum boundary, which is the input parameter pps
- :return: normalized packet rates for each time interval.
- """
- result = self.process_db_query(
- "SELECT lastPktTimestamp,pktsCount FROM interval_statistics ORDER BY lastPktTimestamp")
- # print(result)
- bg_interval_pps = []
- complement_interval_pps = []
- intervals_sum = 0
- if result:
- # Get the interval in seconds
- for i, row in enumerate(result):
- if i < len(result) - 1:
- intervals_sum += ceil((int(result[i + 1][0]) * 10 ** -6) - (int(row[0]) * 10 ** -6))
- interval = intervals_sum / (len(result) - 1)
- # Convert timestamp from micro to seconds, convert packet rate "per interval" to "per second"
- for row in result:
- bg_interval_pps.append((int(row[0]) * 10 ** -6, int(row[1] / interval)))
- # Find max PPS
- max_pps = max(bg_interval_pps, key=itemgetter(1))[1]
- for row in bg_interval_pps:
- complement_interval_pps.append((row[0], int(pps * (max_pps - row[1]) / max_pps)))
- return complement_interval_pps
- def get_tests_statistics(self):
- """
- Writes the calculated basic defects tests statistics into a file.
- """
- # self.stats_db.process_user_defined_query output is list of tuples, thus, we ned [0][0] to access data
- def count_frequncy(values_list):
- values, freq_output = [], []
- for x in values_list:
- if x in values:
- freq_output[values.index(x)] += 1
- else:
- values.append(x)
- freq_output.append(1)
- return values, freq_output
- # Payload Tests
- sum_payload_count = self.stats_db.process_user_defined_query("SELECT sum(payloadCount) FROM "
- "interval_statistics")
- pkt_count = self.stats_db.process_user_defined_query("SELECT packetCount FROM file_statistics")
- if sum_payload_count and pkt_count:
- payload_ratio = 0
- if pkt_count[0][0] != 0:
- payload_ratio = float(sum_payload_count[0][0] / pkt_count[0][0] * 100)
- else:
- payload_ratio = -1
- # TCP checksum Tests
- incorrect_checksum_count = self.stats_db.process_user_defined_query(
- "SELECT sum(incorrectTCPChecksumCount) FROM interval_statistics")
- correct_checksum_count = self.stats_db.process_user_defined_query(
- "SELECT avg(correctTCPChecksumCount) FROM interval_statistics")
- if incorrect_checksum_count and correct_checksum_count:
- incorrect_checksum_ratio = 0
- if (incorrect_checksum_count[0][0] + correct_checksum_count[0][0]) != 0:
- incorrect_checksum_ratio = float(incorrect_checksum_count[0][0] /
- (incorrect_checksum_count[0][0] + correct_checksum_count[0][0]) * 100)
- else:
- incorrect_checksum_ratio = -1
- # IP Src & Dst Tests
- result = self.stats_db.process_user_defined_query("SELECT ipAddress,pktsSent,pktsReceived FROM ip_statistics")
- data, src_frequency, dst_frequency = [], [], []
- if result:
- for row in result:
- src_frequency.append(row[1])
- dst_frequency.append(row[2])
- ip_src_entropy, ip_src_norm_entropy = self.calculate_entropy(src_frequency, True)
- ip_dst_entropy, ip_dst_norm_entropy = self.calculate_entropy(dst_frequency, True)
- new_ip_count = self.stats_db.process_user_defined_query("SELECT newIPCount FROM interval_statistics")
- ip_novels_per_interval, ip_novels_per_interval_frequency = count_frequncy(new_ip_count)
- ip_novelty_dist_entropy = self.calculate_entropy(ip_novels_per_interval_frequency)
- # Ports Tests
- port0_count = self.stats_db.process_user_defined_query(
- "SELECT SUM(portCount) FROM ip_ports WHERE portNumber = 0")
- if not port0_count[0][0]:
- port0_count = 0
- else:
- port0_count = port0_count[0][0]
- # FIXME: could be extended
- reserved_port_count = self.stats_db.process_user_defined_query(
- "SELECT SUM(portCount) FROM ip_ports WHERE portNumber IN (100,114,1023,1024,49151,49152,65535)")
- if not reserved_port_count[0][0]:
- reserved_port_count = 0
- else:
- reserved_port_count = reserved_port_count[0][0]
- # TTL Tests
- result = self.stats_db.process_user_defined_query(
- "SELECT ttlValue,SUM(ttlCount) FROM ip_ttl GROUP BY ttlValue")
- data, frequency = [], []
- for row in result:
- frequency.append(row[1])
- ttl_entropy, ttl_norm_entropy = self.calculate_entropy(frequency, True)
- new_ttl_count = self.stats_db.process_user_defined_query("SELECT newTTLCount FROM interval_statistics")
- ttl_novels_per_interval, ttl_novels_per_interval_frequency = count_frequncy(new_ttl_count)
- ttl_novelty_dist_entropy = self.calculate_entropy(ttl_novels_per_interval_frequency)
- # Window Size Tests
- result = self.stats_db.process_user_defined_query("SELECT winSize,SUM(winCount) FROM tcp_win GROUP BY winSize")
- data, frequency = [], []
- for row in result:
- frequency.append(row[1])
- win_entropy, win_norm_entropy = self.calculate_entropy(frequency, True)
- new_win_size_count = self.stats_db.process_user_defined_query("SELECT newWinSizeCount FROM interval_statistics")
- win_novels_per_interval, win_novels_per_interval_frequency = count_frequncy(new_win_size_count)
- win_novelty_dist_entropy = self.calculate_entropy(win_novels_per_interval_frequency)
- # ToS Tests
- result = self.stats_db.process_user_defined_query(
- "SELECT tosValue,SUM(tosCount) FROM ip_tos GROUP BY tosValue")
- data, frequency = [], []
- for row in result:
- frequency.append(row[1])
- tos_entropy, tos_norm_entropy = self.calculate_entropy(frequency, True)
- new_tos_count = self.stats_db.process_user_defined_query("SELECT newToSCount FROM interval_statistics")
- tos_novels_per_interval, tos_novels_per_interval_frequency = count_frequncy(new_tos_count)
- tos_novelty_dist_entropy = self.calculate_entropy(tos_novels_per_interval_frequency)
- # MSS Tests
- result = self.stats_db.process_user_defined_query(
- "SELECT mssValue,SUM(mssCount) FROM tcp_mss GROUP BY mssValue")
- data, frequency = [], []
- for row in result:
- frequency.append(row[1])
- mss_entropy, mss_norm_entropy = self.calculate_entropy(frequency, True)
- new_mss_count = self.stats_db.process_user_defined_query("SELECT newMSSCount FROM interval_statistics")
- mss_novels_per_interval, mss_novels_per_interval_frequency = count_frequncy(new_mss_count)
- mss_novelty_dist_entropy = self.calculate_entropy(mss_novels_per_interval_frequency)
- result = self.stats_db.process_user_defined_query("SELECT SUM(mssCount) FROM tcp_mss WHERE mssValue > 1460")
- # The most used MSS < 1460. Calculate the ratio of the values bigger that 1460.
- if not result[0][0]:
- result = 0
- else:
- result = result[0][0]
- big_mss = (result / sum(frequency)) * 100
- output = []
- if self.do_extra_tests:
- output = [("Payload ratio", payload_ratio, "%"),
- ("Incorrect TCP checksum ratio", incorrect_checksum_ratio, "%")]
- output = output + [("# IP addresses", sum([x[0] for x in new_ip_count]), ""),
- ("IP Src Entropy", ip_src_entropy, ""),
- ("IP Src Normalized Entropy", ip_src_norm_entropy, ""),
- ("IP Dst Entropy", ip_dst_entropy, ""),
- ("IP Dst Normalized Entropy", ip_dst_norm_entropy, ""),
- ("IP Novelty Distribution Entropy", ip_novelty_dist_entropy, ""),
- ("# TTL values", sum([x[0] for x in new_ttl_count]), ""),
- ("TTL Entropy", ttl_entropy, ""),
- ("TTL Normalized Entropy", ttl_norm_entropy, ""),
- ("TTL Novelty Distribution Entropy", ttl_novelty_dist_entropy, ""),
- ("# WinSize values", sum([x[0] for x in new_win_size_count]), ""),
- ("WinSize Entropy", win_entropy, ""),
- ("WinSize Normalized Entropy", win_norm_entropy, ""),
- ("WinSize Novelty Distribution Entropy", win_novelty_dist_entropy, ""),
- ("# ToS values", sum([x[0] for x in new_tos_count]), ""),
- ("ToS Entropy", tos_entropy, ""),
- ("ToS Normalized Entropy", tos_norm_entropy, ""),
- ("ToS Novelty Distribution Entropy", tos_novelty_dist_entropy, ""),
- ("# MSS values", sum([x[0] for x in new_mss_count]), ""),
- ("MSS Entropy", mss_entropy, ""),
- ("MSS Normalized Entropy", mss_norm_entropy, ""),
- ("MSS Novelty Distribution Entropy", mss_novelty_dist_entropy, ""),
- ("======================", "", "")]
- # Reasoning the statistics values
- if self.do_extra_tests:
- if payload_ratio > 80:
- output.append(("WARNING: Too high payload ratio", payload_ratio, "%."))
- if payload_ratio < 30:
- output.append(("WARNING: Too low payload ratio", payload_ratio, "% (Injecting attacks that are carried "
- "out in the packet payloads is not "
- "recommmanded)."))
- if incorrect_checksum_ratio > 5:
- output.append(("WARNING: High incorrect TCP checksum ratio", incorrect_checksum_ratio, "%."))
- if ip_src_norm_entropy > 0.65:
- output.append(("WARNING: High IP source normalized entropy", ip_src_norm_entropy, "."))
- if ip_src_norm_entropy < 0.2:
- output.append(("WARNING: Low IP source normalized entropy", ip_src_norm_entropy, "."))
- if ip_dst_norm_entropy > 0.65:
- output.append(("WARNING: High IP destination normalized entropy", ip_dst_norm_entropy, "."))
- if ip_dst_norm_entropy < 0.2:
- output.append(("WARNING: Low IP destination normalized entropy", ip_dst_norm_entropy, "."))
- if ttl_norm_entropy > 0.65:
- output.append(("WARNING: High TTL normalized entropy", ttl_norm_entropy, "."))
- if ttl_norm_entropy < 0.2:
- output.append(("WARNING: Low TTL normalized entropy", ttl_norm_entropy, "."))
- if ttl_novelty_dist_entropy < 1:
- output.append(("WARNING: Too low TTL novelty distribution entropy", ttl_novelty_dist_entropy,
- "(The distribution of the novel TTL values is suspicious)."))
- if win_norm_entropy > 0.6:
- output.append(("WARNING: High Window Size normalized entropy", win_norm_entropy, "."))
- if win_norm_entropy < 0.1:
- output.append(("WARNING: Low Window Size normalized entropy", win_norm_entropy, "."))
- if win_novelty_dist_entropy < 4:
- output.append(("WARNING: Low Window Size novelty distribution entropy", win_novelty_dist_entropy,
- "(The distribution of the novel Window Size values is suspicious)."))
- if tos_norm_entropy > 0.4:
- output.append(("WARNING: High ToS normalized entropy", tos_norm_entropy, "."))
- if tos_norm_entropy < 0.1:
- output.append(("WARNING: Low ToS normalized entropy", tos_norm_entropy, "."))
- if tos_novelty_dist_entropy < 0.5:
- output.append(("WARNING: Low ToS novelty distribution entropy", tos_novelty_dist_entropy,
- "(The distribution of the novel ToS values is suspicious)."))
- if mss_norm_entropy > 0.4:
- output.append(("WARNING: High MSS normalized entropy", mss_norm_entropy, "."))
- if mss_norm_entropy < 0.1:
- output.append(("WARNING: Low MSS normalized entropy", mss_norm_entropy, "."))
- if mss_novelty_dist_entropy < 0.5:
- output.append(("WARNING: Low MSS novelty distribution entropy", mss_novelty_dist_entropy,
- "(The distribution of the novel MSS values is suspicious)."))
- if big_mss > 50:
- output.append(("WARNING: High ratio of MSS > 1460", big_mss, "% (High fragmentation rate in Ethernet)."))
- if port0_count > 0:
- output.append(("WARNING: Port number 0 is used in ", port0_count, "packets (awkward-looking port)."))
- if reserved_port_count > 0:
- output.append(("WARNING: Reserved port numbers are used in ", reserved_port_count,
- "packets (uncommonly-used ports)."))
- return output
- def write_statistics_to_file(self):
- """
- Writes the calculated basic statistics into a file.
- """
- def _write_header(title: str):
- """
- Writes the section header into the open file.
- :param title: The section title
- """
- target.write("====================== \n")
- target.write(title + " \n")
- target.write("====================== \n")
- target = open(self.pcap_filepath + ".stat", 'w')
- target.truncate()
- _write_header("PCAP file information")
- Statistics.write_list(self.get_file_information(), target.write)
- _write_header("General statistics")
- Statistics.write_list(self.get_general_file_statistics(), target.write)
- _write_header("Tests statistics")
- Statistics.write_list(self.get_tests_statistics(), target.write)
- target.close()
- def get_capture_duration(self):
- """
- :return: The duration of the capture in seconds
- """
- return self.file_info['captureDuration']
- def get_pcap_timestamp_start(self):
- """
- :return: The timestamp of the first packet in the PCAP file
- """
- return self.file_info['timestampFirstPacket']
- def get_pcap_timestamp_end(self):
- """
- :return: The timestamp of the last packet in the PCAP file
- """
- return self.file_info['timestampLastPacket']
- def get_pps_sent(self, ip_address: str):
- """
- Calculates the sent packets per seconds for a given IP address.
- :param ip_address: The IP address whose packets per second should be calculated
- :return: The sent packets per seconds for the given IP address
- """
- packets_sent = self.stats_db.process_db_query("SELECT pktsSent from ip_statistics WHERE ipAddress=?", False,
- (ip_address,))
- capture_duration = float(self.get_capture_duration())
- return int(float(packets_sent) / capture_duration)
- def get_pps_received(self, ip_address: str):
- """
- Calculate the packets per second received for a given IP address.
- :param ip_address: The IP address used for the calculation
- :return: The number of packets per second received
- """
- packets_received = self.stats_db.process_db_query("SELECT pktsReceived FROM ip_statistics WHERE ipAddress=?",
- False,
- (ip_address,))
- capture_duration = float(self.get_capture_duration())
- return int(float(packets_received) / capture_duration)
- def get_packet_count(self):
- """
- :return: The number of packets in the loaded PCAP file
- """
- return self.file_info['packetCount']
- def get_most_used_ip_address(self):
- """
- :return: The IP address/addresses with the highest sum of packets sent and received
- """
- return Util.handle_most_used_outputs(self.process_db_query("most_used(ipAddress)"))
- def get_ttl_distribution(self, ip_address: str):
- result = self.process_db_query('SELECT ttlValue, ttlCount from ip_ttl WHERE ipAddress="' + ip_address + '"')
- result_dict = {key: value for (key, value) in result}
- return result_dict
- def get_mss_distribution(self, ip_address: str):
- result = self.process_db_query('SELECT mssValue, mssCount from tcp_mss WHERE ipAddress="' + ip_address + '"')
- result_dict = {key: value for (key, value) in result}
- return result_dict
- def get_win_distribution(self, ip_address: str):
- result = self.process_db_query('SELECT winSize, winCount from tcp_win WHERE ipAddress="' + ip_address + '"')
- result_dict = {key: value for (key, value) in result}
- return result_dict
- def get_tos_distribution(self, ip_address: str):
- result = self.process_db_query('SELECT tosValue, tosCount from ip_tos WHERE ipAddress="' + ip_address + '"')
- result_dict = {key: value for (key, value) in result}
- return result_dict
- def get_ip_address_count(self):
- return self.process_db_query("SELECT COUNT(*) FROM ip_statistics")
- def get_ip_addresses(self):
- return self.process_db_query("SELECT ipAddress FROM ip_statistics")
- def get_random_ip_address(self, count: int = 1):
- """
- :param count: The number of IP addreses to return
- :return: A randomly chosen IP address from the dataset or iff param count is greater than one, a list of
- randomly chosen IP addresses
- """
- ip_address_list = self.process_db_query("all(ipAddress)")
- if count == 1:
- return random.choice(ip_address_list)
- else:
- result_list = []
- for i in range(0, count):
- random_ip = random.choice(ip_address_list)
- result_list.append(random_ip)
- ip_address_list.remove(random_ip)
- return result_list
- def get_ip_address_from_mac(self, mac_address: str):
- """
- :param mac_address: the MAC address of which the IP shall be returned, if existing in DB
- :return: the IP address used in the dataset by a given MAC address
- """
- return self.process_db_query('ipAddress(macAddress=' + mac_address + ")")
- def get_mac_address(self, ip_address: str):
- """
- :return: The MAC address used in the dataset for the given IP address.
- """
- return self.process_db_query('macAddress(ipAddress=' + ip_address + ")")
- def get_most_used_mss(self, ip_address: str):
- """
- :param ip_address: The IP address whose used MSS should be determined
- :return: The TCP MSS value used by the IP address, or if the IP addresses never specified a MSS,
- then None is returned
- """
- mss_value = self.process_db_query('SELECT mssValue from tcp_mss WHERE ipAddress="' + ip_address +
- '" AND mssCount == (SELECT MAX(mssCount) from tcp_mss WHERE ipAddress="'
- + ip_address + '")')
- if isinstance(mss_value, int):
- return mss_value
- elif isinstance(mss_value, list):
- if len(mss_value) == 0:
- return None
- else:
- mss_value.sort()
- return mss_value[0]
- else:
- return None
- def get_most_used_ttl(self, ip_address: str):
- """
- :param ip_address: The IP address whose used TTL should be determined
- :return: The TTL value used by the IP address, or if the IP addresses never specified a TTL,
- then None is returned
- """
- ttl_value = self.process_db_query('SELECT ttlValue from ip_ttl WHERE ipAddress="' + ip_address +
- '" AND ttlCount == (SELECT MAX(ttlCount) from ip_ttl WHERE ipAddress="'
- + ip_address + '")')
- if isinstance(ttl_value, int):
- return ttl_value
- elif isinstance(ttl_value, list):
- if len(ttl_value) == 0:
- return None
- else:
- ttl_value.sort()
- return ttl_value[0]
- else:
- return None
- def get_rnd_win_size(self, pkts_num):
- """
- :param pkts_num: maximum number of window sizes, that should be returned
- :return: A list of randomly chosen window sizes with given length.
- """
- sql_return = self.process_db_query("SELECT DISTINCT winSize FROM tcp_win ORDER BY winsize ASC;")
- if not isinstance(sql_return, list):
- return [sql_return]
- result = []
- for i in range(0, min(pkts_num, len(sql_return))):
- result.append(random.choice(sql_return))
- sql_return.remove(result[i])
- return result
- def get_statistics_database(self):
- """
- :return: A reference to the statistics database object
- """
- return self.stats_db
- def process_db_query(self, query_string_in: str, print_results: bool = False):
- """
- Executes a string identified previously as a query. This can be a standard SQL SELECT/INSERT query or a named
- query.
- :param query_string_in: The query to be processed
- :param print_results: Indicates whether the results should be printed to terminal
- :return: The result of the query
- """
- return self.stats_db.process_db_query(query_string_in, print_results)
- def is_query(self, value: str):
- """
- Checks whether the given string is a standard SQL query (SELECT, INSERT) or a named query.
- :param value: The string to be checked
- :return: True if the string is recognized as a query, otherwise False.
- """
- if not isinstance(value, str):
- return False
- else:
- return (any(x in value.lower().strip() for x in self.stats_db.get_all_named_query_keywords()) or
- any(x in value.lower().strip() for x in self.stats_db.get_all_sql_query_keywords()))
- @staticmethod
- def calculate_standard_deviation(lst):
- """
- Calculates the standard deviation of a list of numbers.
- :param lst: The list of numbers to calculate its SD.
- """
- num_items = len(lst)
- mean = sum(lst) / num_items
- differences = [x - mean for x in lst]
- sq_differences = [d ** 2 for d in differences]
- ssd = sum(sq_differences)
- variance = ssd / num_items
- sd = sqrt(variance)
- return sd
- def plot_statistics(self, entropy: int, file_format: str = 'pdf'): # 'png'
- """
- Plots the statistics associated with the dataset.
- :param entropy: the statistics entropy
- :param file_format: The format to be used to save the statistics diagrams.
- """
- def plot_distribution(query_output, title, x_label, y_label, file_ending: str):
- plt.gcf().clear()
- graphx, graphy = [], []
- for row in query_output:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title(title)
- plt.xlabel(x_label)
- plt.ylabel(y_label)
- width = 0.1
- plt.xlim([0, (max(graphx) * 1.1)])
- plt.grid(True)
- plt.bar(graphx, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-' + title + file_ending)
- plt.savefig(out, dpi=500)
- return out
- def plot_ttl(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT ttlValue, SUM(ttlCount) FROM ip_ttl GROUP BY ttlValue")
- title = "TTL Distribution"
- x_label = "TTL Value"
- y_label = "Number of Packets"
- if query_output:
- return plot_distribution(query_output, title, x_label, y_label, file_ending)
- def plot_mss(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT mssValue, SUM(mssCount) FROM tcp_mss GROUP BY mssValue")
- title = "MSS Distribution"
- x_label = "MSS Value"
- y_label = "Number of Packets"
- if query_output:
- return plot_distribution(query_output, title, x_label, y_label, file_ending)
- def plot_win(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT winSize, SUM(winCount) FROM tcp_win GROUP BY winSize")
- title = "Window Size Distribution"
- x_label = "Window Size"
- y_label = "Number of Packets"
- if query_output:
- return plot_distribution(query_output, title, x_label, y_label, file_ending)
- def plot_protocol(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT protocolName, SUM(protocolCount) FROM ip_protocols GROUP BY protocolName")
- if result:
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title("Protocols Distribution")
- plt.xlabel('Protocols')
- plt.ylabel('Number of Packets')
- width = 0.1
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # Protocols' names on x-axis
- x = range(0, len(graphx))
- my_xticks = graphx
- plt.xticks(x, my_xticks)
- plt.bar(x, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-protocol' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- else:
- print("Error plot protocol: No protocol values found!")
- def plot_port(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT portNumber, SUM(portCount) FROM ip_ports GROUP BY portNumber")
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title("Ports Distribution")
- plt.xlabel('Ports Numbers')
- plt.ylabel('Number of Packets')
- width = 0.1
- plt.xlim([0, max(graphx)])
- plt.grid(True)
- plt.bar(graphx, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-port' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- # This distribution is not drawable for big datasets
- def plot_ip_src(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT ipAddress, pktsSent FROM ip_statistics")
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title("Source IP Distribution")
- plt.xlabel('Source IP')
- plt.ylabel('Number of Packets')
- width = 0.1
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # IPs on x-axis
- x = range(0, len(graphx))
- my_xticks = graphx
- plt.xticks(x, my_xticks, rotation='vertical', fontsize=5)
- plt.tight_layout()
- # limit the number of xticks
- plt.locator_params(axis='x', nbins=20)
- plt.bar(x, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-ip-src' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- # This distribution is not drawable for big datasets
- def plot_ip_dst(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT ipAddress, pktsReceived FROM ip_statistics")
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title("Destination IP Distribution")
- plt.xlabel('Destination IP')
- plt.ylabel('Number of Packets')
- width = 0.1
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # IPs on x-axis
- x = range(0, len(graphx))
- my_xticks = graphx
- plt.xticks(x, my_xticks, rotation='vertical', fontsize=5)
- plt.tight_layout()
- # limit the number of xticks
- plt.locator_params(axis='x', nbins=20)
- plt.bar(x, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-ip-dst' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- def plot_interval_statistics(query_output, title, x_label, y_label, file_ending: str):
- plt.gcf().clear()
- graphx, graphy = [], []
- for row in query_output:
- graphx.append(row[0])
- graphy.append(row[1])
- plt.autoscale(enable=True, axis='both')
- plt.title(title)
- plt.xlabel(x_label)
- plt.ylabel(y_label)
- width = 0.5
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # timestamp on x-axis
- x = range(0, len(graphx))
- # limit the number of xticks
- plt.locator_params(axis='x', nbins=20)
- plt.bar(x, graphy, width, align='center', linewidth=1, color='red', edgecolor='red')
- out = self.pcap_filepath.replace('.pcap', '_plot-' + title + file_ending)
- plt.savefig(out, dpi=500)
- return out
- def plot_interval_pkt_count(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, pktsCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "Packet Rate"
- x_label = "Time Interval"
- y_label = "Number of Packets"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_ip_src_ent(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, ipSrcEntropy FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "Source IP Entropy"
- x_label = "Time Interval"
- y_label = "Entropy"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_ip_dst_ent(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, ipDstEntropy FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "Destination IP Entropy"
- x_label = "Time Interval"
- y_label = "Entropy"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_ip(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newIPCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "IP Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_port(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newPortCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "Port Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_ttl(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newTTLCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "TTL Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_tos(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newToSCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "ToS Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_win_size(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newWinSizeCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "Window Size Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_new_mss(file_ending: str):
- query_output = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, newMSSCount FROM interval_statistics ORDER BY lastPktTimestamp")
- title = "MSS Novelty Distribution"
- x_label = "Time Interval"
- y_label = "Novel values count"
- if query_output:
- return plot_interval_statistics(query_output, title, x_label, y_label, file_ending)
- def plot_interval_ip_dst_cum_ent(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, ipDstCumEntropy FROM interval_statistics ORDER BY lastPktTimestamp")
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- # If entropy was not calculated do not plot the graph
- if graphy[0] != -1:
- plt.autoscale(enable=True, axis='both')
- plt.title("Destination IP Cumulative Entropy")
- # plt.xlabel('Timestamp')
- plt.xlabel('Time Interval')
- plt.ylabel('Entropy')
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # timestamp on x-axis
- x = range(0, len(graphx))
- # my_xticks = graphx
- # plt.xticks(x, my_xticks, rotation='vertical', fontsize=5)
- # plt.tight_layout()
- # limit the number of xticks
- plt.locator_params(axis='x', nbins=20)
- plt.plot(x, graphy, 'r')
- out = self.pcap_filepath.replace('.pcap', '_plot-interval-ip-dst-cum-ent' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- def plot_interval_ip_src_cum_ent(file_ending: str):
- plt.gcf().clear()
- result = self.stats_db.process_user_defined_query(
- "SELECT lastPktTimestamp, ipSrcCumEntropy FROM interval_statistics ORDER BY lastPktTimestamp")
- graphx, graphy = [], []
- for row in result:
- graphx.append(row[0])
- graphy.append(row[1])
- # If entropy was not calculated do not plot the graph
- if graphy[0] != -1:
- plt.autoscale(enable=True, axis='both')
- plt.title("Source IP Cumulative Entropy")
- # plt.xlabel('Timestamp')
- plt.xlabel('Time Interval')
- plt.ylabel('Entropy')
- plt.xlim([0, len(graphx)])
- plt.grid(True)
- # timestamp on x-axis
- x = range(0, len(graphx))
- # my_xticks = graphx
- # plt.xticks(x, my_xticks, rotation='vertical', fontsize=5)
- # plt.tight_layout()
- # limit the number of xticks
- plt.locator_params(axis='x', nbins=20)
- plt.plot(x, graphy, 'r')
- out = self.pcap_filepath.replace('.pcap', '_plot-interval-ip-src-cum-ent' + file_ending)
- plt.savefig(out, dpi=500)
- return out
- ttl_out_path = plot_ttl('.' + file_format)
- mss_out_path = plot_mss('.' + file_format)
- win_out_path = plot_win('.' + file_format)
- protocol_out_path = plot_protocol('.' + file_format)
- plot_interval_pktCount = plot_interval_pkt_count('.' + file_format)
- if entropy:
- plot_interval_ip_src_ent = plot_interval_ip_src_ent('.' + file_format)
- plot_interval_ip_dst_ent = plot_interval_ip_dst_ent('.' + file_format)
- plot_interval_ip_src_cum_ent = plot_interval_ip_src_cum_ent('.' + file_format)
- plot_interval_ip_dst_cum_ent = plot_interval_ip_dst_cum_ent('.' + file_format)
- plot_interval_new_ip = plot_interval_new_ip('.' + file_format)
- plot_interval_new_port = plot_interval_new_port('.' + file_format)
- plot_interval_new_ttl = plot_interval_new_ttl('.' + file_format)
- plot_interval_new_tos = plot_interval_new_tos('.' + file_format)
- plot_interval_new_win_size = plot_interval_new_win_size('.' + file_format)
- plot_interval_new_mss = plot_interval_new_mss('.' + file_format)
- # Time consuming plot
- # port_out_path = plot_port('.' + format)
- # Not drawable for too many IPs
- # ip_src_out_path = plot_ip_src('.' + format)
- # ip_dst_out_path = plot_ip_dst('.' + format)
- print("Saved plots in the input PCAP directory.")
- def stats_summary_post_attack(self, added_packets):
- """
- Prints a summary of relevant statistics after an attack is injected
- :param added_packets: sum of packets added by attacks, gets updated if more than one attack
- :return: None
- """
- total_packet_count = self.get_packet_count() + added_packets
- added_packets_share = added_packets / total_packet_count * 100
- timespan = self.get_capture_duration()
- summary = [("Total packet count", total_packet_count, "packets"),
- ("Added packet count", added_packets, "packets"),
- ("Share of added packets", added_packets_share, "%"),
- ("Capture duration", timespan, "seconds")]
- print("\nPOST INJECTION STATISTICS SUMMARY --------------------------")
- self.write_list(summary, print, "")
- print("------------------------------------------------------------")
- def stats_summary_new_db(self):
- """
- Prints a summary of relevant statistics when a new db is created
- :return: None
- """
- self.file_info = self.stats_db.get_file_info()
- print("\nNew database has been generated, printing statistics summary... ")
- total_packet_count = self.get_packet_count()
- pdu_count = self.process_db_query("SELECT SUM(pktCount) FROM unrecognized_pdus")
- pdu_share = pdu_count / total_packet_count * 100
- last_pdu_timestamp = self.process_db_query(
- "SELECT MAX(timestampLastOccurrence) FROM unrecognized_pdus")
- timespan = self.get_capture_duration()
- summary = [("Total packet count", total_packet_count, "packets"),
- ("Recognized packets", total_packet_count - pdu_count, "packets"),
- ("Unrecognized packets", pdu_count, "PDUs"),
- ("% Recognized packets", 100 - pdu_share, "%"),
- ("% Unrecognized packets", pdu_share, "%"),
- ("Last unknown PDU", last_pdu_timestamp),
- ("Capture duration", timespan, "seconds")]
- print("\nPCAP FILE STATISTICS SUMMARY ------------------------------")
- self.write_list(summary, print, "")
- print("------------------------------------------------------------")
|