pcap_processor.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. #include "pcap_processor.h"
  2. using namespace Tins;
  3. /**
  4. * Creates a new pcap_processor object.
  5. * @param path The path where the PCAP to get analyzed is locatated.
  6. */
  7. pcap_processor::pcap_processor(std::string path) : filePath(path) {
  8. }
  9. /**
  10. * Iterates over all packets, starting by packet no. 1, and stops if
  11. * after_packet_number equals the current packet number.
  12. * @param after_packet_number The packet position in the PCAP file whose timestamp is wanted.
  13. * @return The timestamp of the last processed packet plus 1 microsecond.
  14. */
  15. long double pcap_processor::get_timestamp_mu_sec(const int after_packet_number) {
  16. if (file_exists(filePath)) {
  17. FileSniffer sniffer(filePath);
  18. int current_packet = 1;
  19. for (SnifferIterator i = sniffer.begin(); i != sniffer.end(); i++) {
  20. if (after_packet_number == current_packet) {
  21. const Timestamp &ts = i->timestamp();
  22. return (long double) ((ts.seconds() * 1000000) + ts.microseconds() + 1);
  23. }
  24. current_packet++;
  25. }
  26. }
  27. return -1.0;
  28. }
  29. /**
  30. * Merges two PCAP files, given by paths in filePath and parameter pcap_path.
  31. * @param pcap_path The path to the file which should be merged with the loaded PCAP file.
  32. * @return The string containing the file path to the merged PCAP file.
  33. */
  34. std::string pcap_processor::merge_pcaps(const std::string pcap_path) {
  35. // Build new filename with timestamp
  36. // Build timestamp
  37. time_t curr_time = time(0);
  38. char buff[1024];
  39. struct tm *now = localtime(&curr_time);
  40. strftime(buff, sizeof(buff), "%Y%m%d-%H%M%S", now);
  41. std::string tstmp(buff);
  42. // Replace filename with 'timestamp_filename'
  43. std::string new_filepath = filePath;
  44. const std::string &newExt = "_" + tstmp + ".pcap";
  45. std::string::size_type h = new_filepath.rfind('.', new_filepath.length());
  46. if (h != std::string::npos) {
  47. new_filepath.replace(h, newExt.length(), newExt);
  48. } else {
  49. new_filepath.append(newExt);
  50. }
  51. FileSniffer sniffer_base(filePath);
  52. SnifferIterator iterator_base = sniffer_base.begin();
  53. FileSniffer sniffer_attack(pcap_path);
  54. SnifferIterator iterator_attack = sniffer_attack.begin();
  55. PacketWriter writer(new_filepath, PacketWriter::ETH2);
  56. bool all_attack_pkts_processed = false;
  57. // Go through base PCAP and merge packets by timestamp
  58. for (; iterator_base != sniffer_base.end();) {
  59. auto tstmp_base = (iterator_base->timestamp().seconds()) + (iterator_base->timestamp().microseconds()*1e-6);
  60. auto tstmp_attack = (iterator_attack->timestamp().seconds()) + (iterator_attack->timestamp().microseconds()*1e-6);
  61. if (!all_attack_pkts_processed && tstmp_attack <= tstmp_base) {
  62. try {
  63. writer.write(*iterator_attack);
  64. } catch (serialization_error) {
  65. std::cout << std::setprecision(15) << "Could not serialize attack packet with timestamp " << tstmp_attack << std::endl;
  66. }
  67. iterator_attack++;
  68. if (iterator_attack == sniffer_attack.end())
  69. all_attack_pkts_processed = true;
  70. } else {
  71. try {
  72. writer.write(*iterator_base);
  73. } catch (serialization_error) {
  74. std::cout << "Could not serialize base packet with timestamp " << std::setprecision(15) << tstmp_attack << std::endl;
  75. }
  76. iterator_base++;
  77. }
  78. }
  79. // This may happen if the base PCAP is smaller than the attack PCAP
  80. // In this case append the remaining packets of the attack PCAP
  81. for (; iterator_attack != sniffer_attack.end(); iterator_attack++) {
  82. try {
  83. writer.write(*iterator_attack);
  84. } catch (serialization_error) {
  85. auto tstmp_attack = (iterator_attack->timestamp().seconds()) + (iterator_attack->timestamp().microseconds()*1e-6);
  86. std::cout << "Could not serialize attack packet with timestamp " << std::setprecision(15) << tstmp_attack << std::endl;
  87. }
  88. }
  89. return new_filepath;
  90. }
  91. /**
  92. * Collect statistics of the loaded PCAP file. Calls for each packet the method process_packets.
  93. */
  94. void pcap_processor::collect_statistics() {
  95. // Only process PCAP if file exists
  96. if (file_exists(filePath)) {
  97. std::cout << "Loading pcap..." << std::endl;
  98. FileSniffer sniffer(filePath);
  99. // Aidmar - used to know the capture duration, thus choose a suitable interval
  100. FileSniffer snifferOverview(filePath);
  101. SnifferIterator i = sniffer.begin();
  102. Tins::Timestamp lastProcessedPacket;
  103. // Save timestamp of first packet
  104. stats.setTimestampFirstPacket(i->timestamp());
  105. // Aidmar
  106. //int counter=0;
  107. //int timeIntervalCounter = 1;
  108. //int timeIntervalsNum = 100;
  109. //std::chrono::microseconds intervalStartTimestamp = stats.getTimestampFirstPacket();
  110. //std::chrono::microseconds firstTimestamp = stats.getTimestampFirstPacket();
  111. SnifferIterator lastpkt;
  112. for (SnifferIterator j = snifferOverview.begin(); j != snifferOverview.end(); j++) {lastpkt = j;}
  113. //std::chrono::microseconds lastTimestamp = lastpkt->timestamp();
  114. //std::chrono::microseconds captureDuration = lastTimestamp - firstTimestamp;
  115. /*if(captureDuration.count()<=0){
  116. std::cout<<"ERROR: PCAP file is empty!"<<"\n";
  117. return;
  118. }*/
  119. //long timeInterval_microsec = captureDuration.count() / timeIntervalsNum;
  120. //std::chrono::duration<int, std::micro> timeInterval(timeInterval_microsec);
  121. //int previousPacketCount = 0;
  122. //float previousSumPacketSize = 0;
  123. // Iterate over all packets and collect statistics
  124. for (; i != sniffer.end(); i++) {
  125. // Aidmar
  126. //std::chrono::microseconds lastPktTimestamp = i->timestamp();
  127. //Tins::Timestamp tt = i->timestamp();
  128. //std::chrono::microseconds currentCaptureDuration = lastPktTimestamp - firstTimestamp;
  129. //std::chrono::microseconds barrier = timeIntervalCounter*timeInterval;
  130. // For each interval
  131. /*if(currentCaptureDuration>barrier){
  132. stats.addIntervalStat(timeInterval, intervalStartTimestamp, lastPktTimestamp, previousPacketCount, previousSumPacketSize);
  133. timeIntervalCounter++;
  134. intervalStartTimestamp = lastPktTimestamp;
  135. previousPacketCount = stats.getPacketCount();
  136. previousSumPacketSize = stats.getSumPacketSize();
  137. }*/
  138. stats.incrementPacketCount();
  139. this->process_packets(*i);
  140. lastProcessedPacket = i->timestamp();
  141. //counter++;
  142. }
  143. // Save timestamp of last packet into statistics
  144. stats.setTimestampLastPacket(lastProcessedPacket);
  145. // Aidmar
  146. //tests.get_checksum_incorrect_ratio();
  147. //tests.get_payload_ratio();
  148. }
  149. }
  150. /**
  151. * Analyzes a given packet and collects statistical information.
  152. * @param pkt The packet to get analyzed.
  153. */
  154. void pcap_processor::process_packets(const Packet &pkt) {
  155. // Layer 2: Data Link Layer ------------------------
  156. std::string macAddressSender = "";
  157. std::string macAddressReceiver = "";
  158. const PDU *pdu_l2 = pkt.pdu();
  159. uint32_t sizeCurrentPacket = pdu_l2->size();
  160. if (pdu_l2->pdu_type() == PDU::ETHERNET_II) {
  161. EthernetII eth = (const EthernetII &) *pdu_l2;
  162. macAddressSender = eth.src_addr().to_string();
  163. macAddressReceiver = eth.dst_addr().to_string();
  164. sizeCurrentPacket = eth.size();
  165. }
  166. stats.addPacketSize(sizeCurrentPacket);
  167. // Layer 3 - Network -------------------------------
  168. const PDU *pdu_l3 = pkt.pdu()->inner_pdu();
  169. const PDU::PDUType pdu_l3_type = pdu_l3->pdu_type();
  170. std::string ipAddressSender;
  171. std::string ipAddressReceiver;
  172. // PDU is IPv4
  173. if (pdu_l3_type == PDU::PDUType::IP) {
  174. const IP &ipLayer = (const IP &) *pdu_l3;
  175. ipAddressSender = ipLayer.src_addr().to_string();
  176. ipAddressReceiver = ipLayer.dst_addr().to_string();
  177. // IP distribution
  178. stats.addIpStat_packetSent(filePath, ipAddressSender, ipLayer.dst_addr().to_string(), sizeCurrentPacket, pkt.timestamp());
  179. // TTL distribution
  180. stats.incrementTTLcount(ipAddressSender, ipLayer.ttl());
  181. // Protocol distribution
  182. stats.incrementProtocolCount(ipAddressSender, "IPv4");
  183. // Assign IP Address to MAC Address
  184. stats.assignMacAddress(ipAddressSender, macAddressSender);
  185. stats.assignMacAddress(ipAddressReceiver, macAddressReceiver);
  186. // Aidmar - Artifacts Tests: contemporary (ToS)
  187. //tests.check_tos(ipLayer.tos());
  188. } // PDU is IPv6
  189. else if (pdu_l3_type == PDU::PDUType::IPv6) {
  190. const IPv6 &ipLayer = (const IPv6 &) *pdu_l3;
  191. ipAddressSender = ipLayer.src_addr().to_string();
  192. ipAddressReceiver = ipLayer.dst_addr().to_string();
  193. // IP distribution
  194. stats.addIpStat_packetSent(filePath, ipAddressSender, ipLayer.dst_addr().to_string(), sizeCurrentPacket, pkt.timestamp());
  195. // TTL distribution
  196. stats.incrementTTLcount(ipAddressSender, ipLayer.hop_limit());
  197. // Protocol distribution
  198. stats.incrementProtocolCount(ipAddressSender, "IPv6");
  199. // Assign IP Address to MAC Address
  200. stats.assignMacAddress(ipAddressSender, macAddressSender);
  201. stats.assignMacAddress(ipAddressReceiver, macAddressReceiver);
  202. } else {
  203. std::cout << "Unknown PDU Type on L3: " << pdu_l3_type << std::endl;
  204. }
  205. // Layer 4 - Transport -------------------------------
  206. const PDU *pdu_l4 = pdu_l3->inner_pdu();
  207. if (pdu_l4 != 0) {
  208. // Protocol distribution - layer 4
  209. PDU::PDUType p = pdu_l4->pdu_type();
  210. // Aidmar - Artifacts Tests: payload
  211. /*if (pdu_l3_type == PDU::PDUType::IP) {
  212. tests.check_payload(pdu_l4);
  213. }
  214. */
  215. if (p == PDU::PDUType::TCP) {
  216. TCP tcpPkt = (const TCP &) *pdu_l4;
  217. // Aidmar - Artifacts Tests: checksum
  218. /*if (pdu_l3_type == PDU::PDUType::IP) {
  219. tests.check_checksum(ipAddressSender, ipAddressReceiver, tcpPkt);
  220. }*/
  221. stats.incrementProtocolCount(ipAddressSender, "TCP");
  222. // Aidmar
  223. // Conversation statistics
  224. //stats.addConvStat(ipAddressSender, tcpPkt.sport(), ipAddressReceiver, tcpPkt.dport(), pkt.timestamp());
  225. // Aidmar
  226. // Check window size for SYN noly
  227. /*if(tcpPkt.get_flag(TCP::SYN)) {
  228. int win = tcpPkt.window();
  229. stats.incrementWinCount(ipAddressSender, win);
  230. }
  231. */
  232. try {
  233. int val = tcpPkt.mss();
  234. stats.addMSS(ipAddressSender, val);
  235. // Aidmar
  236. // MSS distribution
  237. //stats.incrementMSScount(ipAddressSender, val);
  238. } catch (Tins::option_not_found) {
  239. // Ignore MSS if option not set
  240. }
  241. stats.incrementPortCount(ipAddressSender, tcpPkt.sport(), ipAddressReceiver, tcpPkt.dport());
  242. // UDP Packet
  243. } else if (p == PDU::PDUType::UDP) {
  244. const UDP udpPkt = (const UDP &) *pdu_l4;
  245. stats.incrementProtocolCount(ipAddressSender, "UDP");
  246. stats.incrementPortCount(ipAddressSender, udpPkt.sport(), ipAddressReceiver, udpPkt.dport());
  247. } else if (p == PDU::PDUType::ICMP) {
  248. stats.incrementProtocolCount(ipAddressSender, "ICMP");
  249. } else if (p == PDU::PDUType::ICMPv6) {
  250. stats.incrementProtocolCount(ipAddressSender, "ICMPv6");
  251. }
  252. }
  253. }
  254. /**
  255. * Writes the collected statistic data into a SQLite3 database located at database_path. Uses an existing
  256. * database or, if not present, creates a new database.
  257. * @param database_path The path to the database file, ending with .sqlite3.
  258. */
  259. void pcap_processor::write_to_database(std::string database_path) {
  260. stats.writeToDatabase(database_path);
  261. }
  262. /**
  263. * Checks whether the file with the given file path exists.
  264. * @param filePath The path to the file to check.
  265. * @return True iff the file exists, otherweise False.
  266. */
  267. bool inline pcap_processor::file_exists(const std::string &filePath) {
  268. struct stat buffer;
  269. return stat(filePath.c_str(), &buffer) == 0;
  270. }
  271. /*
  272. * Comment in if executable should be build & run
  273. * Comment out if library should be build
  274. */
  275. ///*int main() {
  276. // std::cout << "Starting application." << std::endl;
  277. // //pcap_processor pcap = pcap_processor("/mnt/hgfs/datasets/95M.pcap");
  278. ////pcap_processor pcap = pcap_processor("/home/pjattke/temp/test_me_short.pcap");
  279. // pcap_processor pcap = pcap_processor("/tmp/tmp0hhz2oia");
  280. ////long double t = pcap.get_timestamp_mu_sec(87);
  281. //// std::cout << t << std::endl;
  282. //
  283. //// time_t start, end;
  284. //// time(&start);
  285. //// pcap.collect_statistics();
  286. //// time(&end);
  287. //// double dif = difftime(end, start);
  288. //// printf("Elapsed time is %.2lf seconds.", dif);
  289. //// pcap.stats.writeToDatabase("/home/pjattke/myDB.sqlite3");
  290. //
  291. // std::string path = pcap.merge_pcaps("/tmp/tmp0okkfdx_");
  292. // std::cout << path << std::endl;
  293. //
  294. //
  295. // return 0;
  296. //}*/
  297. /*
  298. * Comment out if executable should be build & run
  299. * Comment in if library should be build
  300. */
  301. #include <boost/python.hpp>
  302. using namespace boost::python;
  303. BOOST_PYTHON_MODULE (libpcapreader) {
  304. class_<pcap_processor>("pcap_processor", init<std::string>())
  305. .def("merge_pcaps", &pcap_processor::merge_pcaps)
  306. .def("collect_statistics", &pcap_processor::collect_statistics)
  307. .def("get_timestamp_mu_sec", &pcap_processor::get_timestamp_mu_sec)
  308. .def("write_to_database", &pcap_processor::write_to_database);
  309. }