statistics.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include "statistics.h"
  6. #include <sstream>
  7. #include <SQLiteCpp/SQLiteCpp.h>
  8. #include "statistics_db.h"
  9. #include "statistics.h"
  10. #include "utilities.h"
  11. using namespace Tins;
  12. /**
  13. * Checks if there is a payload and increments payloads counter.
  14. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  15. */
  16. void statistics::checkPayload(const PDU *pdu_l4) {
  17. if(this->getDoExtraTests()) {
  18. // pdu_l4: Tarnsport layer 4
  19. int pktSize = pdu_l4->size();
  20. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  21. int payloadSize = pktSize - headerSize;
  22. if (payloadSize > 0)
  23. payloadCount++;
  24. }
  25. }
  26. /**
  27. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  28. * @param ipAddressSender The source IP.
  29. * @param ipAddressReceiver The destination IP.
  30. * @param tcpPkt The packet to get checked.
  31. */
  32. void statistics::checkTCPChecksum(const std::string &ipAddressSender, const std::string &ipAddressReceiver, TCP tcpPkt) {
  33. if(this->getDoExtraTests()) {
  34. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  35. correctTCPChecksumCount++;
  36. else incorrectTCPChecksumCount++;
  37. }
  38. }
  39. /**
  40. * Calculates entropy of the source and destination IPs in a time interval.
  41. * @param intervalStartTimestamp The timstamp where the interval starts.
  42. * @return a vector: contains source IP entropy and destination IP entropy.
  43. */
  44. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  45. if(this->getDoExtraTests()) {
  46. // TODO: change datastructures
  47. std::vector<long> IPsSrcPktsCounts;
  48. std::vector<long> IPsDstPktsCounts;
  49. std::vector<long> IPsSrcNovelPktsCounts;
  50. std::vector<long> IPsDstNovelPktsCounts;
  51. std::vector<double> IPsSrcProb;
  52. std::vector<double> IPsDstProb;
  53. std::vector<double> IPsSrcNovelProb;
  54. std::vector<double> IPsDstNovelProb;
  55. long pktsSent = 0, pktsReceived = 0, novelPktsSent = 0, novelPktsReceived = 0;
  56. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  57. long IPsSrcPktsCount = 0;
  58. long IPsSrcNovelPktsCount = 0;
  59. if (intervalCumIPStats.count(i->first) == 0) {
  60. IPsSrcPktsCount = i->second.pkts_sent;
  61. IPsSrcNovelPktsCount = i->second.pkts_sent;
  62. IPsSrcNovelPktsCounts.push_back(IPsSrcNovelPktsCount);
  63. novelPktsSent += IPsSrcNovelPktsCount;
  64. } else {
  65. IPsSrcPktsCount = i->second.pkts_sent-intervalCumIPStats[i->first].pkts_sent;
  66. }
  67. if(IPsSrcPktsCount != 0) {
  68. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  69. pktsSent += IPsSrcPktsCount;
  70. }
  71. long IPsDstPktsCount = 0;
  72. long IPsDstNovelPktsCount = 0;
  73. if (intervalCumIPStats.count(i->first) == 0) {
  74. IPsDstPktsCount = i->second.pkts_received;
  75. IPsDstNovelPktsCount = i->second.pkts_received;
  76. IPsDstNovelPktsCounts.push_back(IPsDstNovelPktsCount);
  77. novelPktsReceived += IPsDstNovelPktsCount;
  78. } else {
  79. IPsDstPktsCount = i->second.pkts_received-intervalCumIPStats[i->first].pkts_received;
  80. }
  81. if(IPsDstPktsCount != 0) {
  82. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  83. pktsReceived += IPsDstPktsCount;
  84. }
  85. }
  86. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  87. IPsSrcProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsSent));
  88. }
  89. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  90. IPsDstProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsReceived));
  91. }
  92. for (auto i = IPsSrcNovelPktsCounts.begin(); i != IPsSrcNovelPktsCounts.end(); i++) {
  93. IPsSrcNovelProb.push_back(static_cast<double>(*i) / static_cast<double>(novelPktsSent));
  94. }
  95. for (auto i = IPsDstNovelPktsCounts.begin(); i != IPsDstNovelPktsCounts.end(); i++) {
  96. IPsDstNovelProb.push_back(static_cast<double>(*i) / static_cast<double>(novelPktsReceived));
  97. }
  98. // Calculate IP source entropy
  99. double IPsSrcEntropy = 0;
  100. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  101. if (IPsSrcProb[i] > 0)
  102. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  103. }
  104. // Calculate IP destination entropy
  105. double IPsDstEntropy = 0;
  106. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  107. if (IPsDstProb[i] > 0)
  108. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  109. }
  110. // Calculate IP source novel entropy
  111. double IPsSrcNovelEntropy = 0;
  112. for (unsigned i = 0; i < IPsSrcNovelProb.size(); i++) {
  113. if (IPsSrcNovelProb[i] > 0)
  114. IPsSrcNovelEntropy += -IPsSrcNovelProb[i] * log2(IPsSrcNovelProb[i]);
  115. }
  116. // Calculate IP destination novel entropy
  117. double IPsDstNovelEntropy = 0;
  118. for (unsigned i = 0; i < IPsDstNovelProb.size(); i++) {
  119. if (IPsDstNovelProb[i] > 0)
  120. IPsDstNovelEntropy += -IPsDstNovelProb[i] * log2(IPsDstNovelProb[i]);
  121. }
  122. // FIXME: return doubles not floats
  123. std::vector<float> entropies = {static_cast<float>(IPsSrcEntropy), static_cast<float>(IPsDstEntropy), static_cast<float>(IPsSrcNovelEntropy), static_cast<float>(IPsDstNovelEntropy)};
  124. return entropies;
  125. }
  126. else {
  127. return {-1, -1, -1, -1};
  128. }
  129. }
  130. /**
  131. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  132. * @return a vector: contains the cumulative entropies of source and destination IPs
  133. */
  134. std::vector<float> statistics::calculateIPsCumEntropy(){
  135. if(this->getDoExtraTests()) {
  136. std::vector <std::string> IPs;
  137. std::vector <float> IPsSrcProb;
  138. std::vector <float> IPsDstProb;
  139. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  140. IPs.push_back(i->first);
  141. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  142. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  143. }
  144. // Calculate IP source entropy
  145. float IPsSrcEntropy = 0;
  146. for(unsigned i=0; i < IPsSrcProb.size();i++){
  147. if (IPsSrcProb[i] > 0)
  148. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  149. }
  150. // Calculate IP destination entropy
  151. float IPsDstEntropy = 0;
  152. for(unsigned i=0; i < IPsDstProb.size();i++){
  153. if (IPsDstProb[i] > 0)
  154. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  155. }
  156. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  157. return entropies;
  158. }
  159. else {
  160. return {-1, -1};
  161. }
  162. }
  163. /**
  164. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  165. * @param intervalStartTimestamp The timstamp where the interval starts.
  166. */
  167. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  168. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  169. int IPsSrcPktsCount = 0;
  170. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  171. if(*j >= intervalStartTimestamp)
  172. IPsSrcPktsCount++;
  173. }
  174. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  175. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  176. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  177. i->second.max_interval_pkt_rate = interval_pkt_rate;
  178. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  179. i->second.min_interval_pkt_rate = interval_pkt_rate;
  180. }
  181. }
  182. /**
  183. * Calculates the entropies for the count of integer values.
  184. * @param current map containing the values with counts
  185. * @param an old map containing the values with counts (from last iteration)
  186. * @return a vector containing the calculated entropies: entropy of all updated values, entropy of all novel values
  187. */
  188. std::vector<double> statistics::calculateEntropies(std::unordered_map<int, int> &map, std::unordered_map<int, int> &old) {
  189. std::vector<double> counts;
  190. int count_total = 0;
  191. double entropy = 0.0;
  192. std::vector<double> novel_counts;
  193. int novel_count_total = 0;
  194. double novel_entropy = 0.0;
  195. // iterate over all values
  196. for (auto iter: map) {
  197. if (old.count(iter.first) == 0) {
  198. // count novel values
  199. double novel_count = static_cast<double>(iter.second);
  200. counts.push_back(novel_count);
  201. count_total += novel_count;
  202. novel_counts.push_back(novel_count);
  203. novel_count_total += novel_count;
  204. } else if (old.count(iter.first) != map.count(iter.first)) {
  205. // count all increased values
  206. double count = static_cast<double>(iter.second-old[iter.first]);
  207. if (count != 0.0) {
  208. counts.push_back(count);
  209. count_total += count;
  210. }
  211. }
  212. }
  213. // calculate entropy
  214. for (auto count: counts) {
  215. double prob = count / static_cast<double>(count_total);
  216. entropy += -1 * prob * log2(prob);
  217. }
  218. // calculate novelty entropy
  219. for (auto novel_count: novel_counts) {
  220. double novel_prob = novel_count / static_cast<double>(novel_count_total);
  221. novel_entropy += -1 * novel_prob * log2(novel_prob);
  222. }
  223. return {entropy, novel_entropy};
  224. }
  225. /**
  226. * Registers statistical data for a time interval.
  227. * @param intervalStartTimestamp The timstamp where the interval starts.
  228. * @param intervalEndTimestamp The timstamp where the interval ends.
  229. * @param previousPacketCount The total number of packets in last interval.
  230. */
  231. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  232. // Add packet rate for each IP to ip_statistics map
  233. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  234. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  235. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  236. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  237. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  238. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  239. // TODO: check with carlos if first and last packet timestamps are alright
  240. interval_statistics[lastPktTimestamp_s].start = std::to_string(intervalStartTimestamp.count());
  241. interval_statistics[lastPktTimestamp_s].end = std::to_string(intervalEndTimestamp.count());
  242. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  243. interval_statistics[lastPktTimestamp_s].pkt_rate = static_cast<float>(interval_statistics[lastPktTimestamp_s].pkts_count) / (static_cast<double>(interval.count()) / 1000000);
  244. interval_statistics[lastPktTimestamp_s].kbytes = static_cast<float>(sumPacketSize - intervalCumSumPktSize) / 1024;
  245. interval_statistics[lastPktTimestamp_s].kbyte_rate = interval_statistics[lastPktTimestamp_s].kbytes / (static_cast<double>(interval.count()) / 1000000);
  246. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  247. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  248. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  249. interval_statistics[lastPktTimestamp_s].novel_ip_count = static_cast<int>(ip_statistics.size()) - intervalCumNovelIPCount;
  250. interval_statistics[lastPktTimestamp_s].novel_ttl_count = static_cast<int>(ttl_values.size()) - intervalCumNovelTTLCount;
  251. interval_statistics[lastPktTimestamp_s].novel_win_size_count = static_cast<int>(win_values.size()) - intervalCumNovelWinSizeCount;
  252. interval_statistics[lastPktTimestamp_s].novel_tos_count = static_cast<int>(tos_values.size()) - intervalCumNovelToSCount;
  253. interval_statistics[lastPktTimestamp_s].novel_mss_count = static_cast<int>(mss_values.size()) - intervalCumNovelMSSCount;
  254. interval_statistics[lastPktTimestamp_s].novel_port_count = static_cast<int>(port_values.size()) - intervalCumNovelPortCount;
  255. interval_statistics[lastPktTimestamp_s].ttl_entropies = calculateEntropies(ttl_values, intervalCumTTLValues);
  256. interval_statistics[lastPktTimestamp_s].win_size_entropies = calculateEntropies(win_values, intervalCumWinSizeValues);
  257. interval_statistics[lastPktTimestamp_s].tos_entropies = calculateEntropies(tos_values, intervalCumTosValues);
  258. interval_statistics[lastPktTimestamp_s].mss_entropies = calculateEntropies(mss_values, intervalCumMSSValues);
  259. interval_statistics[lastPktTimestamp_s].port_entropies = calculateEntropies(port_values, intervalCumPortValues);
  260. intervalPayloadCount = payloadCount;
  261. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  262. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  263. intervalCumPktCount = packetCount;
  264. intervalCumSumPktSize = sumPacketSize;
  265. intervalCumNovelIPCount = static_cast<int>(ip_statistics.size());
  266. intervalCumNovelTTLCount = static_cast<int>(ttl_values.size());
  267. intervalCumNovelWinSizeCount = static_cast<int>(win_values.size());
  268. intervalCumNovelToSCount =static_cast<int>(tos_values.size());
  269. intervalCumNovelMSSCount = static_cast<int>(mss_values.size());
  270. intervalCumNovelPortCount = static_cast<int>(port_values.size());
  271. intervalCumIPStats = ip_statistics;
  272. intervalCumTTLValues = ttl_values;
  273. intervalCumWinSizeValues = win_values;
  274. intervalCumTosValues = tos_values;
  275. intervalCumMSSValues = mss_values;
  276. intervalCumPortValues = port_values;
  277. if(ipEntopies.size()>1){
  278. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  279. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  280. interval_statistics[lastPktTimestamp_s].ip_src_novel_entropy = ipEntopies[2];
  281. interval_statistics[lastPktTimestamp_s].ip_dst_novel_entropy = ipEntopies[3];
  282. }
  283. if(ipCumEntopies.size()>1){
  284. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  285. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  286. }
  287. }
  288. /**
  289. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  290. * Increments the counter packets_A_B or packets_B_A.
  291. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  292. * @param ipAddressSender The sender IP address.
  293. * @param sport The source port.
  294. * @param ipAddressReceiver The receiver IP address.
  295. * @param dport The destination port.
  296. * @param timestamp The timestamp of the packet.
  297. */
  298. void statistics::addConvStat(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  299. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  300. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  301. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  302. if (conv_statistics.count(f1)>0){
  303. conv_statistics[f1].pkts_count++;
  304. if(conv_statistics[f1].pkts_count<=3)
  305. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  306. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  307. }
  308. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  309. else{
  310. conv_statistics[f2].pkts_count++;
  311. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  312. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  313. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  314. }
  315. }
  316. /**
  317. * Registers statistical data for a sent packet in a given extended conversation (two IPs, two ports, protocol).
  318. * Increments the counter packets_A_B or packets_B_A.
  319. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  320. * Updates all other statistics of conv_statistics_extended
  321. * @param ipAddressSender The sender IP address.
  322. * @param sport The source port.
  323. * @param ipAddressReceiver The receiver IP address.
  324. * @param dport The destination port.
  325. * @param protocol The used protocol.
  326. * @param timestamp The timestamp of the packet.
  327. */
  328. void statistics::addConvStatExt(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport,const std::string &protocol, std::chrono::microseconds timestamp){
  329. if(this->getDoExtraTests()) {
  330. convWithProt f1 = {ipAddressReceiver, dport, ipAddressSender, sport, protocol};
  331. convWithProt f2 = {ipAddressSender, sport, ipAddressReceiver, dport, protocol};
  332. convWithProt f;
  333. // if there already exists a communication interval for the specified conversation
  334. if (conv_statistics_extended.count(f1) > 0 || conv_statistics_extended.count(f2) > 0){
  335. // find out which direction of conversation is contained in conv_statistics_extended
  336. if (conv_statistics_extended.count(f1) > 0)
  337. f = f1;
  338. else
  339. f = f2;
  340. // increase pkts count and check on delay
  341. conv_statistics_extended[f].pkts_count++;
  342. if (conv_statistics_extended[f].pkts_timestamp.size()>0 && conv_statistics_extended[f].pkts_count<=3)
  343. conv_statistics_extended[f].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics_extended[f].pkts_timestamp.back()));
  344. conv_statistics_extended[f].pkts_timestamp.push_back(timestamp);
  345. // if the time difference has exceeded the threshold, create a new interval with this message
  346. if (timestamp - conv_statistics_extended[f].comm_intervals.back().end > (std::chrono::microseconds) ((unsigned long) COMM_INTERVAL_THRESHOLD)) { // > or >= ?
  347. commInterval new_interval = {timestamp, timestamp, 1};
  348. conv_statistics_extended[f].comm_intervals.push_back(new_interval);
  349. }
  350. // otherwise, set the time of the last interval message to the current timestamp and increase interval packet count by 1
  351. else{
  352. conv_statistics_extended[f].comm_intervals.back().end = timestamp;
  353. conv_statistics_extended[f].comm_intervals.back().pkts_count++;
  354. }
  355. }
  356. // if there does not exist a communication interval for the specified conversation
  357. else{
  358. // add initial interval entry for this conversation
  359. commInterval initial_interval = {timestamp, timestamp, 1};
  360. entry_convStatExt entry;
  361. entry.comm_intervals.push_back(initial_interval);
  362. entry.pkts_count = 1;
  363. entry.pkts_timestamp.push_back(timestamp);
  364. conv_statistics_extended[f2] = entry;
  365. }
  366. }
  367. }
  368. /**
  369. * Aggregate the collected information about all communication intervals within conv_statistics_extended of every conversation.
  370. * Do this by computing the average packet rate per interval and the average time between intervals.
  371. * Also compute average interval duration and total communication duration (i.e. last_msg.time - first_msg.time)
  372. */
  373. void statistics::createCommIntervalStats(){
  374. // iterate over all <convWithProt, entry_convStatExt> pairs
  375. for (auto &cur_elem : conv_statistics_extended) {
  376. entry_convStatExt &entry = cur_elem.second;
  377. std::vector<commInterval> &intervals = entry.comm_intervals;
  378. // if there is only one interval, the time between intervals cannot be computed and is therefore set to 0
  379. if (intervals.size() == 1){
  380. double interval_duration = (double) (intervals[0].end - intervals[0].start).count() / (double) 1e6;
  381. entry.avg_int_pkts_count = (double) intervals[0].pkts_count;
  382. entry.avg_time_between_ints = (double) 0;
  383. entry.avg_interval_time = interval_duration;
  384. }
  385. // If there is more than one interval, compute the specified averages
  386. else if (intervals.size() > 1){
  387. long summed_pkts_count = intervals[0].pkts_count;
  388. std::chrono::microseconds time_between_ints_sum = (std::chrono::microseconds) 0;
  389. std::chrono::microseconds summed_int_duration = intervals[0].end - intervals[0].start;
  390. for (std::size_t i = 1; i < intervals.size(); i++) {
  391. summed_pkts_count += intervals[i].pkts_count;
  392. summed_int_duration += intervals[i].end - intervals[i].start;
  393. time_between_ints_sum += intervals[i].start - intervals[i - 1].end;
  394. }
  395. entry.avg_int_pkts_count = summed_pkts_count / ((double) intervals.size());
  396. entry.avg_time_between_ints = (time_between_ints_sum.count() / (double) (intervals.size() - 1)) / (double) 1e6;
  397. entry.avg_interval_time = (summed_int_duration.count() / (double) intervals.size()) / (double) 1e6;
  398. }
  399. entry.total_comm_duration = (double) (entry.pkts_timestamp.back() - entry.pkts_timestamp.front()).count() / (double) 1e6;
  400. }
  401. }
  402. /**
  403. * Increments the packet counter for the given IP address and MSS value.
  404. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  405. * @param mssValue The MSS value of the packet.
  406. */
  407. void statistics::incrementMSScount(const std::string &ipAddress, int mssValue) {
  408. mss_values[mssValue]++;
  409. mss_distribution[{ipAddress, mssValue}]++;
  410. }
  411. /**
  412. * Increments the packet counter for the given IP address and window size.
  413. * @param ipAddress The IP address whose window size packet counter should be incremented.
  414. * @param winSize The window size of the packet.
  415. */
  416. void statistics::incrementWinCount(const std::string &ipAddress, int winSize) {
  417. win_values[winSize]++;
  418. win_distribution[{ipAddress, winSize}]++;
  419. }
  420. /**
  421. * Increments the packet counter for the given IP address and TTL value.
  422. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  423. * @param ttlValue The TTL value of the packet.
  424. */
  425. void statistics::incrementTTLcount(const std::string &ipAddress, int ttlValue) {
  426. ttl_values[ttlValue]++;
  427. ttl_distribution[{ipAddress, ttlValue}]++;
  428. }
  429. /**
  430. * Increments the packet counter for the given IP address and ToS value.
  431. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  432. * @param tosValue The ToS value of the packet.
  433. */
  434. void statistics::incrementToScount(const std::string &ipAddress, int tosValue) {
  435. tos_values[tosValue]++;
  436. tos_distribution[{ipAddress, tosValue}]++;
  437. }
  438. /**
  439. * Increments the protocol counter for the given IP address and protocol.
  440. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  441. * @param protocol The protocol of the packet.
  442. */
  443. void statistics::incrementProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  444. protocol_distribution[{ipAddress, protocol}].count++;
  445. }
  446. /**
  447. * Returns the number of packets seen for the given IP address and protocol.
  448. * @param ipAddress The IP address whose packet count is wanted.
  449. * @param protocol The protocol whose packet count is wanted.
  450. */
  451. int statistics::getProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  452. return protocol_distribution[{ipAddress, protocol}].count;
  453. }
  454. /**
  455. * Increases the byte counter for the given IP address and protocol.
  456. * @param ipAddress The IP address whose protocol byte counter should be increased.
  457. * @param protocol The protocol of the packet.
  458. * @param byteSent The packet's size.
  459. */
  460. void statistics::increaseProtocolByteCount(const std::string &ipAddress, const std::string &protocol, long bytesSent) {
  461. protocol_distribution[{ipAddress, protocol}].byteCount += bytesSent;
  462. }
  463. /**
  464. * Returns the number of bytes seen for the given IP address and protocol.
  465. * @param ipAddress The IP address whose byte count is wanted.
  466. * @param protocol The protocol whose byte count is wanted.
  467. * @return a float: The number of bytes
  468. */
  469. float statistics::getProtocolByteCount(const std::string &ipAddress, const std::string &protocol) {
  470. return protocol_distribution[{ipAddress, protocol}].byteCount;
  471. }
  472. /**
  473. * Increments the packet counter for
  474. * - the given sender IP address with outgoing port and
  475. * - the given receiver IP address with incoming port.
  476. * @param ipAddressSender The IP address of the packet sender.
  477. * @param outgoingPort The port used by the sender.
  478. * @param ipAddressReceiver The IP address of the packet receiver.
  479. * @param incomingPort The port used by the receiver.
  480. */
  481. void statistics::incrementPortCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  482. int incomingPort, const std::string &protocol) {
  483. port_values[outgoingPort]++;
  484. port_values[incomingPort]++;
  485. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].count++;
  486. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].count++;
  487. }
  488. /**
  489. * Increases the packet byte counter for
  490. * - the given sender IP address with outgoing port and
  491. * - the given receiver IP address with incoming port.
  492. * @param ipAddressSender The IP address of the packet sender.
  493. * @param outgoingPort The port used by the sender.
  494. * @param ipAddressReceiver The IP address of the packet receiver.
  495. * @param incomingPort The port used by the receiver.
  496. * @param byteSent The packet's size.
  497. */
  498. void statistics::increasePortByteCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  499. int incomingPort, long bytesSent, const std::string &protocol) {
  500. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].byteCount += bytesSent;
  501. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].byteCount += bytesSent;
  502. }
  503. /**
  504. * Increments the packet counter for
  505. * - the given sender MAC address and
  506. * - the given receiver MAC address.
  507. * @param srcMac The MAC address of the packet sender.
  508. * @param dstMac The MAC address of the packet receiver.
  509. * @param typeNumber The payload type number of the packet.
  510. */
  511. void statistics::incrementUnrecognizedPDUCount(const std::string &srcMac, const std::string &dstMac, uint32_t typeNumber,
  512. const std::string &timestamp) {
  513. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].count++;
  514. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].timestamp_last_occurrence = timestamp;
  515. }
  516. /**
  517. * Creates a new statistics object.
  518. */
  519. statistics::statistics(std::string resourcePath) {;
  520. this->resourcePath = resourcePath;
  521. }
  522. /**
  523. * Stores the assignment IP address -> MAC address.
  524. * @param ipAddress The IP address belonging to the given MAC address.
  525. * @param macAddress The MAC address belonging to the given IP address.
  526. */
  527. void statistics::assignMacAddress(const std::string &ipAddress, const std::string &macAddress) {
  528. ip_mac_mapping[ipAddress] = macAddress;
  529. }
  530. /**
  531. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  532. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  533. * @param ipAddressSender The IP address of the packet sender.
  534. * @param ipAddressReceiver The IP address of the packet receiver.
  535. * @param bytesSent The packet's size.
  536. */
  537. void statistics::addIpStat_packetSent(const std::string &ipAddressSender, const std::string &ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  538. // Adding IP as a sender for first time
  539. if(ip_statistics[ipAddressSender].pkts_sent==0){
  540. // Add the IP class
  541. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  542. }
  543. // Adding IP as a receiver for first time
  544. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  545. // Add the IP class
  546. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  547. }
  548. // Update stats for packet sender
  549. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  550. ip_statistics[ipAddressSender].pkts_sent++;
  551. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  552. // Update stats for packet receiver
  553. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  554. ip_statistics[ipAddressReceiver].pkts_received++;
  555. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  556. if(this->getDoExtraTests()) {
  557. // Increment Degrees for sender and receiver, if Sender sends its first packet to this receiver
  558. std::unordered_set<std::string>::const_iterator found_receiver = contacted_ips[ipAddressSender].find(ipAddressReceiver);
  559. if(found_receiver == contacted_ips[ipAddressSender].end()){
  560. // Receiver is NOT contained in the List of IPs, that the Sender has contacted, therefore this is the first packet in this direction
  561. ip_statistics[ipAddressSender].out_degree++;
  562. ip_statistics[ipAddressReceiver].in_degree++;
  563. // Increment overall_degree only if this is the first packet for the connection (both directions)
  564. // Therefore check, whether Receiver has contacted Sender before
  565. std::unordered_set<std::string>::const_iterator sender_contacted = contacted_ips[ipAddressReceiver].find(ipAddressSender);
  566. if(sender_contacted == contacted_ips[ipAddressReceiver].end()){
  567. ip_statistics[ipAddressSender].overall_degree++;
  568. ip_statistics[ipAddressReceiver].overall_degree++;
  569. }
  570. contacted_ips[ipAddressSender].insert(ipAddressReceiver);
  571. }
  572. }
  573. }
  574. /**
  575. * Setter for the timestamp_firstPacket field.
  576. * @param ts The timestamp of the first packet in the PCAP file.
  577. */
  578. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  579. timestamp_firstPacket = ts;
  580. }
  581. /**
  582. * Setter for the timestamp_lastPacket field.
  583. * @param ts The timestamp of the last packet in the PCAP file.
  584. */
  585. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  586. timestamp_lastPacket = ts;
  587. }
  588. /**
  589. * Getter for the timestamp_firstPacket field.
  590. */
  591. Tins::Timestamp statistics::getTimestampFirstPacket() {
  592. return timestamp_firstPacket;
  593. }
  594. /**
  595. * Getter for the timestamp_lastPacket field.
  596. */
  597. Tins::Timestamp statistics::getTimestampLastPacket() {
  598. return timestamp_lastPacket;
  599. }
  600. /**
  601. * Getter for the packetCount field.
  602. */
  603. int statistics::getPacketCount() {
  604. return packetCount;
  605. }
  606. /**
  607. * Getter for the sumPacketSize field.
  608. */
  609. int statistics::getSumPacketSize() {
  610. return sumPacketSize;
  611. }
  612. /**
  613. * Returns the average packet size.
  614. * @return a float indicating the average packet size in kbytes.
  615. */
  616. float statistics::getAvgPacketSize() const {
  617. // AvgPktSize = (Sum of all packet sizes / #Packets)
  618. return (sumPacketSize / packetCount) / 1024;
  619. }
  620. /**
  621. * Adds the size of a packet (to be used to calculate the avg. packet size).
  622. * @param packetSize The size of the current packet in bytes.
  623. */
  624. void statistics::addPacketSize(uint32_t packetSize) {
  625. sumPacketSize += ((float) packetSize);
  626. }
  627. /**
  628. * Setter for the doExtraTests field.
  629. */
  630. void statistics::setDoExtraTests(bool var) {
  631. doExtraTests = var;
  632. }
  633. /**
  634. * Getter for the doExtraTests field.
  635. */
  636. bool statistics::getDoExtraTests() {
  637. return doExtraTests;
  638. }
  639. /**
  640. * Calculates the capture duration.
  641. * @return a formatted string HH:MM:SS.mmmmmm with
  642. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  643. */
  644. std::string statistics::getCaptureDurationTimestamp() const {
  645. // Calculate duration
  646. timeval fp, lp, d;
  647. fp.tv_sec = timestamp_firstPacket.seconds();
  648. fp.tv_usec = timestamp_firstPacket.microseconds();
  649. lp.tv_sec = timestamp_lastPacket.seconds();
  650. lp.tv_usec = timestamp_lastPacket.microseconds();
  651. timersub(&lp, &fp, &d);
  652. long int hour = d.tv_sec / 3600;
  653. long int remainder = (d.tv_sec - hour * 3600);
  654. long int minute = remainder / 60;
  655. long int second = (remainder - minute * 60) % 60;
  656. long int microseconds = d.tv_usec;
  657. // Build desired output format: YYYY-mm-dd hh:mm:ss
  658. char out[64];
  659. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  660. return std::string(out);
  661. }
  662. /**
  663. * Calculates the capture duration.
  664. * @return a formatted string SS.mmmmmm with
  665. * S: seconds (UNIX time), mmmmmm: microseconds
  666. */
  667. float statistics::getCaptureDurationSeconds() const {
  668. timeval fp, lp, d;
  669. fp.tv_sec = timestamp_firstPacket.seconds();
  670. fp.tv_usec = timestamp_firstPacket.microseconds();
  671. lp.tv_sec = timestamp_lastPacket.seconds();
  672. lp.tv_usec = timestamp_lastPacket.microseconds();
  673. timersub(&lp, &fp, &d);
  674. char buf[64];
  675. snprintf(buf, sizeof(buf), "%u.%06u", static_cast<uint>(d.tv_sec), static_cast<uint>(d.tv_usec));
  676. return std::stof(std::string(buf));
  677. }
  678. /**
  679. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  680. * @param seconds
  681. * @param microseconds
  682. * @return a formatted string Y-m-d H:M:S.m with
  683. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  684. */
  685. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  686. timeval tv;
  687. tv.tv_sec = seconds;
  688. tv.tv_usec = microseconds;
  689. char tmbuf[20], buf[64];
  690. auto nowtm = gmtime(&(tv.tv_sec));
  691. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  692. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, static_cast<uint>(tv.tv_usec));
  693. return std::string(buf);
  694. }
  695. /**
  696. * Calculates the statistics for a given IP address.
  697. * @param ipAddress The IP address whose statistics should be calculated.
  698. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  699. */
  700. ip_stats statistics::getStatsForIP(const std::string &ipAddress) {
  701. float duration = getCaptureDurationSeconds();
  702. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  703. ip_stats s;
  704. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  705. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  706. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  707. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  708. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  709. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  710. return s;
  711. }
  712. int statistics::getDefaultInterval() {
  713. return this->default_interval;
  714. }
  715. void statistics::setDefaultInterval(int interval) {
  716. this->default_interval = interval;
  717. }
  718. /**
  719. * Increments the packet counter.
  720. */
  721. void statistics::incrementPacketCount() {
  722. packetCount++;
  723. }
  724. /**
  725. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  726. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  727. */
  728. void statistics::printStats(const std::string &ipAddress) {
  729. std::stringstream ss;
  730. ss << std::endl;
  731. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  732. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  733. ss << "#Packets: " << packetCount << std::endl;
  734. ss << std::endl;
  735. // Print IP address specific statistics only if IP address was given
  736. if (ipAddress != "") {
  737. entry_ipStat e = ip_statistics[ipAddress];
  738. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  739. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  740. ss << "KBytes received: " << e.kbytes_received << std::endl;
  741. ss << "Packets sent: " << e.pkts_sent << std::endl;
  742. ss << "Packets received: " << e.pkts_received << "\n\n";
  743. ip_stats is = getStatsForIP(ipAddress);
  744. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  745. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  746. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  747. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  748. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  749. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  750. }
  751. std::cout << ss.str();
  752. }
  753. /**
  754. * Derives general PCAP file statistics from the collected statistical data and
  755. * writes all data into a SQLite database, located at database_path.
  756. * @param database_path The path of the SQLite database file ending with .sqlite3.
  757. */
  758. void statistics::writeToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  759. // Generate general file statistics
  760. float duration = getCaptureDurationSeconds();
  761. long sumPacketsSent = 0, senderCountIP = 0;
  762. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  763. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  764. sumPacketsSent += i->second.pkts_sent;
  765. // Consumed bandwith (bytes) for sending packets
  766. sumBandwidthIn += (i->second.kbytes_received / duration);
  767. sumBandwidthOut += (i->second.kbytes_sent / duration);
  768. senderCountIP++;
  769. }
  770. float avgPacketRate = (packetCount / duration);
  771. long avgPacketSize = getAvgPacketSize();
  772. if(senderCountIP>0) {
  773. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  774. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  775. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  776. // Create database and write information
  777. statistics_db db(database_path, resourcePath);
  778. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  779. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  780. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  781. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  782. avgBandwidthOutInKBits, doExtraTests);
  783. db.writeStatisticsIP(ip_statistics);
  784. db.writeStatisticsTTL(ttl_distribution);
  785. db.writeStatisticsIpMac(ip_mac_mapping);
  786. db.writeStatisticsDegree(ip_statistics);
  787. db.writeStatisticsPorts(ip_ports);
  788. db.writeStatisticsProtocols(protocol_distribution);
  789. db.writeStatisticsMSS(mss_distribution);
  790. db.writeStatisticsToS(tos_distribution);
  791. db.writeStatisticsWin(win_distribution);
  792. db.writeStatisticsConv(conv_statistics);
  793. db.writeStatisticsConvExt(conv_statistics_extended);
  794. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  795. db.writeDbVersion();
  796. db.writeStatisticsUnrecognizedPDUs(unrecognized_PDUs);
  797. }
  798. else {
  799. // Tinslib failed to recognize the types of the packets in the input PCAP
  800. std::cerr<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  801. return;
  802. }
  803. }
  804. void statistics::writeIntervalsToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  805. statistics_db db(database_path, resourcePath);
  806. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  807. }